US009311224B1

a2z United States Patent (10) Patent No.: US 9,311,224 B1
Cohen et al. (45) Date of Patent: Apr. 12,2016
(54) MANIPULATING A TEST BASED ON A 6,865,692 B2 3/2005 Friedman et al.
SUBSET OF SIMILAR DIVERGENT ROUTES 6,898,784 Bl 5/2005 Kossatchev et al.
7,032,212 B2 4/2006 Amir et al.
FROM DIFFERENT ORGANIZATIONS 75581212 B2 /2000 West et al,
. 7,793,267 B2* 9/2010 Davison GOGF 11/3476
(71) Applicant: Panaya Ltd., Raanana (IL) 714/38.14
7,809,525 B2 10/2010 Chagoly et al.
(72) Inventors: Yossi Cohen, Raanana (IL); Mati 7,849,447 Bl 12/2010 Karis et al.
Cohen, Raanana (IL); Nurit Dor, 8,266,592 B2 9/2012 Beto et al.
K . 2008/0086348 Al 4/2008 Rao et al.
Raanana (IL); Dror Weiss, Raanana (IL) 2009/0106262 Al 4/2009 Fallen et al.
. 2009/0183143 Al 7/2009 Li et al.
(73) Assignee: Panaya Ltd., Raanana (IL) 2010/0192220 Al 7/2010 Heizmann et al.
(*) Notice: Subject to any disclaimer, the term of this (Continued)
patent is extended or adjusted under 35
U.S.C. 154(b) by 200 days. OTHER PUBLICATIONS
(21) Appl. No.: 14/142,769 Sreedevi Sampa.th, A Scalable Approach to User-.session based Test-
ing ofWeb Applications through Concept Analysis, 2004.
(22) Filed: Dec. 28, 2013 (Continued)
Related U.S. Application Data
(63) Continuation-in-part of application No. 13/103,078, Primary Examiner — Sarai Butler
filed on May 8, 2011, now Pat. No. 8,739,128. (74) Attorney, Agent, or Firm — Active Knowledge Ltd.
(60) Provisional application No. 61/747,313, filed on Dec.
30, 2012, provisional application No. 61/814,305, (57) ABSTRACT
filed on Apr. 21, 2013, provisional application No.
61/919,773, filed on Dec. 22, 2013. System, method, and non-transitory medium for utilizing
routes followed by runs of test scenarios to manipulate a test
(31) Int.Cl scenario template. Runs of test scenarios run by users belong-
GOoF 11/00 (2006.01) ing to different organizations on software systems associated
GOGF 11/36 (2006.01) with the different organizations are analyzed to identify
(52) US.ClL routes that the runs follows; the identified routes may be
C.PC o GO6F 11/3688 (2013.01) stored in a database. A route retriever receives a certain tem-
(58) Field of Classification Search plate route belonging to a test scenario template and retrieves
USPC Bt e e 7 l 4/33 from the database divergent routes that diverge from the tem-
See application file for complete search history. plate route. A subset selector selects from the divergent routes
. a subset of divergent routes that are similar to each other. A
(56) References Cited template manipulator manipulates the test scenario template

U.S. PATENT DOCUMENTS

5,629,878 A 5/1997 Kobrosly
6,360,332 Bl 3/2002 Weinberg et al.
6,810,494 B2 10/2004 Weinberg et al.

according to the subset if the size of the subset reaches a
predetermined threshold.

20 Claims, 10 Drawing Sheets

Activity dat
“g_té e Test

{ i ’ Monitaring

250 module
352

retriever Routes DB analyzer
3983 302 301

Subset
selector
394

identifier
354

Manipulated
template
200

US 9,311,224 B1
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2010/0287534 Al
2011/0078510 Al*

11/2010 Vangala et al.
3/2011 Beveridge GOGF 11/2247
714/38.1

OTHER PUBLICATIONS

Jinhua Li, Clustering User Session Data for Web Applications Test,
2011, Journal of Computational Information Systems.

G. Ruffo, R. Schifanella, and M. Sereno, WALTy: A User Behavior
Tailored Tool for Evaluating Web Application Performance, 2004,
Proceedings ofthe Third IEEE International Symposium on Network
Computing and Applications.

Sanaa Alsmadi, Generation of Test Cases From Websites User Ses-
sions, 2011, The 5th International Conference on Information Tech-
nology.

David Leon, A Comparison of Coverage-Based and Distribution-
Based Techniques for Filtering and Prioritizing Test Cases.

* cited by examiner

U.S. Patent

350

Apr. 12,2016 Sheet 1 of 10 US 9,311,224 B1
o Activity data
Monitoring 353 Test
module — identifier
352 354

Route Divergent
counter routes DB
360 358
Manipulated
template :
Template 363 Ranking
manipulator — module
362 364
User Data
interface cleaner
368 366

FIG. 1

Route
analyzer
356

US 9,311,224 B1

U.S. Patent Apr. 12,2016 Sheet 2 of 10
Activity data
353 Test Route
— » identifier analyzer
354 356
m-;enriT;)Fl)Jlg[teor clzazir Divergent
routes DB
362 360 358
Manipulated
template
363 FIG. 2
\J
794 \'
Tx1: Tx1: Tx1: Tx2: Tx2:
Scr 1 Scr 2 Scr3 Scr4 Scr5
Tx1: | ~795 796
Scr7 '/'
Tx1: Tx1: Tx1: Tx2: Tx2:
Scr 1 Scr2 Scr 3 Scr 4 Scr 5
797 \‘
Tx1: Tx1:] Tx1: Tx1: Tx2: Tx2:
Ser 1 Scr 2 Scr7 Scr 3 Scr4 Scer5

FIG. 3

U.S. Patent Apr. 12,2016 Sheet 3 of 10 US 9,311,224 B1

370 N Monitor users running test scenarios
371 N Identify runs of test scenarios

'

Receive certain run of a test scenario instantiated from a
372 AN template

;

Identify certain divergent route that diverges from the

373 A template route
4
374 N Store the divergent route in a database
4
Count number of divergent routes in the database
375 N essentially the same to the certain divergent route

l

Manipulate test scenario template according to the divergent
376 N routes if the number reaches threshold

4
377 < Remove proprietary data from the manipulated template

4
378 N Suggest the manipulated test scenario template

FIG. 4

U.S. Patent Apr. 12,2016 Sheet 4 of 10 US 9,311,224 B1

380 N Monitor users running test scenarios
381 N Identify runs of test scenarios
Receive certain run of a test scenario instantiated from a
382 A first template
Identify certain divergent route diverging from first template
383 Ve route
384 N Store the certain divergent route
Receive second template route belonging to a second test
385))
scenario template
Count number of divergent routes in database that are
386 N essentially the same as the second template route
\ J
Manipulate second test scenario template according to the
387 N divergent routes if the number reaches a threshold
Remove proprietary data from the manipulated second test
388 N)
scenario template
389 N Suggest the manipulated test scenario template

FIG. 5

U.S. Patent Apr. 12,2016 Sheet 5 of 10 US 9,311,224 B1

Q
A o Activity data
Monitoring 353 Test
350 module — identifier
352 354
X
Template
route
390
Route - Route
retriever Routes DB analyzer
393 392 391
Manipulated
template
Subset Template 399 Ranking
selector manipulator module
394 395 396
User Data
interface cleaner
398 397

FIG. 6

U.S. Patent Apr. 12,2016 Sheet 6 of 10 US 9,311,224 B1

Activity data

353 Test
» identifier
354
Template
route
390
Route - Route
retriever Routes DB analyzer
393 392 391
Manipulated
template
Subset Template 399
selector manipulator >
394 395

FIG. 7

U.S. Patent Apr. 12,2016 Sheet 7 of 10 US 9,311,224 B1

400 N Monitor users running test scenarios
!
401 N Identify runs of test scenarios
'
402 N Receive a run of a test scenario
!
403 N Identify a route that the run follows
'
404 AN Store the route in a database
!
405 N Receive certain template route
!
406 N Retrieve from database divergent routes
!
407 N Select a subset of the divergent routes
I
408 N Manipulate the template according to the subset
'
409 « Remove proprietary data from the manipulated template
l
410 N Suggest the manipulated test scenario template

FIG. 8

U.S. Patent

Apr. 12,2016 Sheet 8 of 10 US 9,311,224 B1
Template Ranking Data Customization
generator module cleaner module
770 1 72 773
User
FIG' 9A interface
74
Template Ranking Data Customization
generator module cleaner module
70 1 172 73
FIG. 9B
Template Customization Data .
User interface
generator module cleaner 777
770 75 776 -
FIG. 9C
Template Data Customization :
User interface
generator cleaner module 777
770 778 779 -

FIG. 9D

U.S. Patent Apr. 12,2016 Sheet 9 of 10 US 9,311,224 B1

Template Data User Ranking
generator cleaner interface module
70 780 781 182
FIG. 9E
Template Customization User Data cleaner
generator module interface 285
770 775 784 —
FIG. 9F
Template User
generator interface
770 774

FIG. 9G

U.S. Patent Apr. 12,2016 Sheet 10 of 10 US 9,311,224 B1

790\

Scr1+—Scr2+—Scr3+—Scr4 Scr 5 Scr6 +— Scr7

FIG. 10A
791
\' Scr 9 Scr 10
Scr1 | Scr2 Slcr4 Scr 5 |— Scr 6 |—{ Scr 7
FIG. 10B

792
\1 Scr 9 — Scr 11

Scr1+—Scr2+— Scr3}— Scr4

FIG. 10C

793 \

Scr8 —{Scr9 —Scr12—L
Scr 4 Scr5+—Scr61— Scr7

FIG. 10D

US 9,311,224 B1

1
MANIPULATING A TEST BASED ON A
SUBSET OF SIMILAR DIVERGENT ROUTES
FROM DIFFERENT ORGANIZATIONS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This Application is a Continuation-In-Part of application
Ser. No. 13/103,078, filed May 8, 2011. This Application
claims the benefit of U.S. Provisional Patent Application No.
61/747,313, filed Dec. 30, 2012, and U.S. Provisional Patent
Application No. 61/814,305, filed Apr. 21, 2013. This appli-
cation also claims the benefit of U.S. Provisional Patent
Application No. 61/919,773, filed Dec. 22, 2013, the entire
contents of which is herein incorporated by reference in its
entirety for all that it teaches without exclusion of any part
thereof.

The following co-pending US Patent Applications, filed on
Dec. 27, 2013: Ser. Nos. 14/141,514; 14/141,564; 14/141,
588; 14/141,623; 14/141,655; 14/141,676; 14/141,726;
14/141,859; 14/141,887; 14/141,925; 14/141,974, and the
following co-pending US Patent Applications, filed on Dec.
28, 2013: Ser. Nos. 14/142,768; 14/142,770; 14/142,771,
14/142,772; 14/142,774; 14/142,781; 14/142,783; 14/142,
784, may include related subject matter.

BACKGROUND

Software systems, such as Enterprise Resource Planning
(ERP) systems, are often used by organizations to perform the
numerous and diverse computational tasks involved in con-
ducting business. The software systems may involve many
different software modules, which may also be customized to
meet a specific organization’s needs. Each time a module is
installed, updated, and/or customized, it typically needs to be
tested in order to verify that it operates as expected. Organi-
zations often devote many resources for the purpose of testing
and validating the performance of their software systems.

However, creating tests is not a trivial task. It is not always
simple to determine what elements should be tested (e.g.,
which software modules, business processes, and/or transac-
tions), or how conduct the testing of those elements. Building
an effective and relevant testing suite is usually a time-con-
suming process, built on trial and error and domain know-
how. Until an effective testing suite is built, and organization
may end up conducting inefficient and/or incomplete testing
of'its systems.

One hurdle faced by test designers is the vast diversity of
system options and system behavior that may be encountered
and need to be tested. For example, business processes may
have different behaviors to cover different options, different
users, and\or for special cases. Generating tests that cover all
cases is not trivial; it may require foresight, imagination, and
experience that may not be available to the test designer. For
example, the test designer may not be aware of certain options
that are available in the system since they were never utilized
by the organization to which the test designer belongs; how-
ever, a recent update to the system has caused these options to
be applicable for the organization. In this case, the test
designer may not anticipate, nor have knowledge of how to
test, the new options.

It is often the case that software systems belonging to
different organizations utilize many software modules that
are the same or similar, and/or software modules that involve
similar customizations. Consequently, testers belonging to
the different organizations often end up running tests for
testing those same or similar components. Thus, were orga-

10

15

20

25

30

35

40

45

50

55

60

65

2

nizations able to utilize each other’s testing-related knowl-
edge, they might be able to expand their testing arsenal and
come up with more effective, comprehensive, and relevant
tests. For example, after an update to a certain software mod-
ule, a certain organization may devise a few tests to verify the
system’s performance. The test designers at the certain orga-
nization may have overlooked certain aspects of the module,
which they did not include in the tests. However, test design-
ers in other organizations may have identified those aspects
and addressed them in the tests they devised. Were there
sharing of information between organizations, the tests
devised for the certain organization might have ended up
including the overlooked aspects.

BRIEF SUMMARY

Some aspects of this disclosure involve methods, systems,
and/or non-transitory computer-readable medium, which
enable manipulation of a test scenario template in order to
update it, or create a new template. Optionally, the manipu-
lation is performed according to a subset of divergent routes
that are selected from among routes retrieved from a database.
Optionally, a route defines a sequence of one or more ele-
ments involved in running a test scenario, such as test steps,
transactions, and/or screens. The routes retrieved from the
database are similar to a certain template route which belongs
to the test scenario template. Thus, the manipulation accord-
ing to divergent routes may considered a form of testing data
sharing among organizations. The sharing may allow organi-
zations running certain tests to obtain information that may
enable them to create additional tests involving additional
aspects not addressed by their original tests.

In some embodiments, a test scenario template is a model
according to which a test scenario may be structured. A test
scenario template may include one or more test steps, which
instruct a user on an action to be performed as part of the test,
such as where to enter a value, what button to push, what
screen to select, or what transaction to run. Optionally, a test
scenario template may include one or more default values
used for running an instantiation of the test scenario template
(e.g., default values for certain fields in a screen).

One aspect of this disclosure involves a computer system
that is configured to utilize routes followed by runs of test
scenarios to manipulate a test scenario template. The com-
puter system includes a test identifier that is configured to
identify runs of test scenarios run by users belonging to dif-
ferent organizations on software systems associated with the
different organizations. Additionally, the computer system
includes a route analyzer, a database, and a route retriever.
The route analyzer is configured to receive a run of a test
scenario and to identify a route that the run follows. The
database is configured to store the route. The route retriever is
configured to receive a certain template route belonging to a
test scenario template and to retrieve from the database diver-
gent routes that diverge from the template route. Optionally,
the test scenario template is associated with a certain organi-
zation that does not belong to the different organizations. The
computer system also includes a subset selector and a tem-
plate generator. The subset selector is configured to select
from the divergent routes a subset of divergent routes that are
similar to each other, and the template manipulator is config-
ured to manipulate the test scenario template according to the
subset ifthe size of the subset reaches a predetermined thresh-
old. Optionally, the template manipulator is configured to
manipulate the test scenario template by updating the test
scenario template according to one or more of the routes
belonging to the subset. Additionally or alternatively, the

US 9,311,224 B1

3

template manipulator may be configured to manipulate the
test scenario template by generating a new test scenario tem-
plate based on the test scenario template and one or of the
routes belonging to the subset.

In one embodiment, the computer system optionally
includes a data cleaner that is configured to select a value from
the manipulated test scenario template, and remove the
selected value from the manipulated test scenario template if
the selected value does not appear in runs of test scenarios that
follow at least two routes that belong to the subset. In another
embodiment, the computer system optionally includes a
monitoring module that is configured to monitor the users
running the test scenarios on the software systems that belong
to the different organizations and to provide data obtained
from the monitoring to the test identifier. In yet another
embodiment, the computer system optionally includes a user
interface that is configured to suggest to a user to run an
instantiation of the manipulated test scenario template.

Another aspect of this disclosure involves a computer
implemented method for utilizing routes followed by runs of
test scenarios to manipulate a test scenario template. Execut-
ing the method may involve performing the following: Iden-
tifying runs of test scenarios run by users belonging to differ-
ent organizations on software systems associated with the
different organizations. Receiving a certain run of a test sce-
nario. Identifying a route that the certain run follows. Storing
the route in a database. Receiving a certain template route
belonging to a test scenario template. Optionally, the test
scenario template is associated with a certain organization
that does not belong to the different organizations. Retrieving
from the database divergent routes that diverge from the tem-
plate route. Selecting from the divergent routes a subset of
divergent routes that are similar to each other. And manipu-
lating the test scenario template according to the subset if the
size of the subset reaches a predetermined threshold. Option-
ally, manipulating the test scenario template according to the
subset involves updating the test scenario template according
to one or more divergent routes belonging to the subset.
Additionally or alternatively, manipulating the test scenario
template according to the subset may involve generating a
new test scenario template based on the test scenario template
and one or more divergent routes belonging to the subset.

In one embodiment, executing the method may optionally
involve monitoring the users running the test scenarios on the
software systems that belong to different organizations and
providing data obtained from the monitoring for use in the
identifying of the runs of test scenarios. In another embodi-
ment, executing the method may optionally involve selecting
a value from the manipulated test scenario template, and
removing the selected value from the manipulated test sce-
nario template if the selected value does not appear in runs
that follow at least two of the divergent routes belonging to the
subset. In yet another embodiment, executing the method
may optionally involve suggesting to a user to run an instan-
tiation of the manipulated test scenario template.

Yet another aspect of this disclosure involves a non-transi-
tory computer-readable medium for use in a computer to
utilize routes followed by runs of test scenarios to manipulate
a test scenario template. The computer includes a processor,
and the non-transitory computer-readable medium includes
the following program code: Program code for identifying
runs of test scenarios run by users belonging to different
organizations on software systems associated with the difter-
ent organizations. Program code for receiving a certain run of
a test scenario. Program code for identifying a route that the
run follows. Program code for storing the route in a database.
Program code for receiving a certain template route belong-

40

45

55

4

ing to a test scenario template. Optionally, the test scenario
template is associated with a certain organization that does
not belong to the different organizations. Program code for
retrieving from the database divergent routes that diverge
from the template route. Program code for selecting from the
divergent routes a subset of divergent routes that are similar to
each other. And program code for manipulating the test sce-
nario template according to the subset if the size of the subset
reaches a predetermined threshold.

In one embodiment, the program code for manipulating the
test scenario template according to the subset includes pro-
gram code for updating the test scenario template according
to one or more of the divergent routes belonging to the subset.
In another embodiment, the program code for manipulating
the test scenario template according to the subset includes
program code for generating a new test scenario template
based on the test scenario template and one or more of the
divergent routes belonging to the subset. In one embodiment,
the program code stored in the non-transitory computer-read-
able medium optionally includes program code for selecting
a value from the manipulated test scenario template, and
removing the selected value from the manipulated test sce-
nario template if the selected value does not appear in runs
that follow at least two of the divergent routes belonging to the
subset. Optionally, the program code also involves testing that
the at least two of the divergent routes are associated with at
least two different organizations.

BRIEF DESCRIPTION OF THE DRAWINGS

The embodiments are herein described, by way of example
only, with reference to the accompanying drawings. In the
drawings:

FIG. 1 illustrates one embodiment of a computer system
configured to utilize runs of test scenarios run by users
belonging to different organizations to manipulate a test sce-
nario template according to divergent routes in the runs;

FIG. 2 illustrates one embodiment of a computer system
configured to utilize runs of test scenarios run by users
belonging to different organizations to manipulate a test sce-
nario template according to divergent routes in the runs;

FIG. 3 illustrates updating of a test scenario template
according to divergent routes;

FIG. 4 illustrates one embodiment of a computer imple-
mented method for utilizing divergent routes identified in
runs of test scenarios to manipulate a test scenario template;

FIG. 5 illustrates one embodiment of a computer imple-
mented method for utilizing divergent routes identified in
runs of test scenarios to manipulate a test scenario template;

FIG. 6 illustrates one embodiment of a computer system
configured to utilize routes followed by runs of test scenarios
to manipulate a test scenario template;

FIG. 7 illustrates one embodiment of a computer system
configured to utilize routes followed by runs of test scenarios
to manipulate a test scenario template;

FIG. 8 illustrates one embodiment of a computer imple-
mented method for utilizing routes followed by runs of test
scenarios to manipulate a test scenario template;

FIG. 9A illustrates a combination of system modules that
may be used in embodiments described in this disclosure;

FIG. 9B illustrates a combination of system modules that
may be used in embodiments described in this disclosure;

FIG. 9C illustrates a combination of system modules that
may be used in embodiments described in this disclosure;

FIG. 9D illustrates a combination of system modules that
may be used in embodiments described in this disclosure;

US 9,311,224 B1

5

FIG. 9E illustrates a combination of system modules that
may be used in embodiments described in this disclosure;

FIG. 9F illustrates a combination of system modules that
may be used in embodiments described in this disclosure;

FIG. 9G illustrates a combination of system modules that
may be used in embodiments described in this disclosure;

FIG. 10A illustrates a template route that includes a
sequence of seven screens;

FIG. 10B illustrates a divergent route that diverges from the
template route and later on converges back to the template
route;

FIG. 10C illustrates a divergent route that diverges from the
template route and does not converge back to the template
route; and

FIG. 10D illustrates a divergent route that merges with the
template route.

DETAILED DESCRIPTION

The term “transaction” is defined as a computer program,
such as SAP ERP transaction or Oracle Application Form. In
one example, a transaction may enable a user to access a
certain functionality and/or may be called by filling its code in
a box in a screen and/or by selecting it from a menu. In
another example, a transaction is a logical portion of work,
performed by a processor, involving the execution of one or
more SQL statements.

The term “test step” refers to one or more actions per-
formed via a User Interface (UI) as part of running a test
scenario. In some cases, performing actions via a user inter-
face may be achieved by interacting with the user interface,
and/or by interacting with an Application Program Interface
(API) related to the user interface.

The terms “a description of a run of a test scenario”, also
referred to as “a run of a test scenario”, refer to data pertaining
to running a test scenario on a software system (e.g., inputs,
outputs, and/or intermediate data generated prior to running
the test scenario, data generated during its run, and/or data
generated as a result of running the test scenario). In one
example, a run of test scenario may be obtained from moni-
toring a user running the test scenario on a software system. In
the interest of brevity, in this disclosure, a term like “run of a
test scenario” may be replaced with the shorter “run”, where
it is clear from the context. A run of a test scenario may be
referred to as being “run by a user”. This means that data
included in the run of'the test scenario is related to, or gener-
ated from, activity of the user on a software system, in which
test steps of the test scenario were executed. Optionally, at
least some of the data included in the run of the test scenario
is derived from monitoring the activity of the user, which is
related to execution of the test steps. Additionally, a run of a
test scenario may be referred to as being associated with an
organization, meaning that the run of the test scenario was run
by a user belonging to the organization. Optionally, the user
belonging to the organization ran the test scenario, at least in
part, on a software system that belongs to the organization.
Moreover, if it is mentioned, for example, that runs of test
scenarios are received or clustered, it is meant that the objects
being received may be processed descriptions of the runs of
test scenarios (e.g., describing various attributes of the runs of
the test scenarios), and not necessarily the actual raw
recorded data that was initially obtained from monitoring
users running the test scenarios.

A run of a test scenario may be considered an instantiation
of'the test scenario. That is, a certain test scenario may be run
several times. For example, a test scenario may be run by
different users, run on different systems, and/or run by the

25

40

45

50

6

same user on the same system at different times. Each time the
test scenario is run, that may be considered an event of instan-
tiating the test scenario, and each run of the test scenario may
be considered an instantiation of the test scenario.

In some embodiments, runs of test scenarios are identified
from data obtained from monitoring users. Optionally, moni-
toring users may involve detecting, recording, and/or analyz-
ing information entered by the users to computer systems
and/or information presented to the users by the computer
systems. Additionally or alternatively, monitoring may
involve logging programs that were executed by the users,
values utilized by the programs, memory content of programs
and/or network traffic related to activities taken by the users.
Optionally, a run of a test scenario may include data obtained
from monitoring that underwent processing, summarization
and/or analysis. Thus, a run of a test scenario need not nec-
essarily include all data obtained from monitoring the run-
ning of the test scenario, and/or include data obtained from
the monitoring in the same form as it was originally collected
in.

A run of a test scenario may include descriptions of various
aspects of running the test scenario such as: (i) the identity
and/or composition (e.g., field types and/or identifiers) of a
user interface (UI) screens the user manipulated and/or was
exposed to while running the test scenario; (ii) user interac-
tions with a system (e.g., actions performed by the user) (iii)
transactions executed; (iii) behavior of the system during the
test scenario (e.g., content of network transmissions, proce-
dure calls, requests made to components of the system); and/
or (iv) representations of the state of the system at various
stages before, during, and/or after the test scenario is run.
Additionally, a run of a test scenario may include data
extracted from the test scenario and/or template of which the
run is an instantiation. For example, the run may include
values taken from a script according to which the run is
executed and/or default values that appeared in template of
which the run is an instantiation. The run may even include
portions, or the entire scope, of the test scenario and/or the
template of which the run is an instantiation.

A test scenario that is run by a user may be characterized
according to its degree of automation, depending on type of
involvement required of the user. In cases where the user is
required to enter most of the values (e.g., field values on a
screen), the run of the test scenario may be considered to be a
manual run. In other cases, where the system provides some
of'the values (e.g., automatically fills values in no more than
95% of the fields on a screen/transaction/business process),
but the user is still required to provide other values (e.g. enter
values to fields that remain without values in the screen/
transaction/business process), the run of the test scenario may
be considered to be a semiautomatic run. In cases where little
to no user intervention is needed (e.g., the script for running
atestincludes more than 95% of'the values to be entered to the
UT for the test, and is read by the system), the run of the test
scenario may be considered to be an automatic run.

The term “test scenario template” refers to a model accord-
ing to which a test scenario may be structured. A test scenario
template may include one or more test steps, which instruct a
user on an action to perform as part of the test, such as where
to enter a value, what button to push, what screen to select, or
what transaction to run. Optionally, a test scenario template
may include one or more default values used for running an
instantiation of the test scenario template (e.g., default values
for certain fields in a screen). Additionally or alternatively, a
test scenario template may be missing one or more values that
are required for running an instantiation of the test scenario
template; in such a case, a user running the instantiation of a

US 9,311,224 B1

7

template may provide the one or more missing values. In the
interest of brevity, in this disclosure, a term like “test scenario
template” may be replaced with the shorter “template”, where
it is clear from the context.

A run of a test scenario based on a test scenario template
may be considered an instantiation of the test scenario tem-
plate. For example, different users may run test scenarios
based on a certain template; each time one of the users runs a
test scenario based on the certain template, the corresponding
run of that test scenario is considered an instantiation of the
certain template. Similarly, if a user runs multiple test sce-
narios based on a template, where each time a test scenario
was run it was run on a same software system, each of the runs
of the test scenarios is considered a separate instantiation of
the certain template. Optionally, a test scenario template may
be considered associated with an organization if a user
belonging to the organization ran an instantiation of the tem-
plate and/or is intended to run an instantiation of the template.
Additionally or alternatively, a test scenario template may be
considered associated with an organization if the template
was generated based on one or more runs of test scenarios that
are associated with the organization.

As used herein, the term “software system” refers to a
computer system that has software components (e.g., soft-
ware modules that include programs). A software system may
involve hardware (e.g., servers with processors) on which the
software may run. The hardware may be dedicated hardware
for the software system (e.g., servers sitting at an organization
to which the software systems belong). Additionally or alter-
natively, hardware involved in a software system may be
allocated on demand (e.g., cloud-based servers that are uti-
lized by the software system as needed by it).

FIG. 1 and FIG. 2 illustrate embodiments of a computer
system configured to utilize runs of test scenarios run by users
belonging to different organizations to manipulate a test sce-
nario template according to divergent routes in the runs. The
illustrated embodiments include at least a test identifier 354,
aroute analyzer 356, a database 358, a route counter 360, and
a template manipulator 362.

Herein, a route defines a sequence of one or more elements
involved in a run of a test scenario; an element may be a test
step, a transactions, or a screen. Additionally, a test scenario
template may define a template route that instantiations of the
template are supposed to follow. Thus, a run of a test scenario
based on a template is expected to reflect the template route;
for example, the run may describe screens and/or transactions
included in the template route.

The test identifier 354 is configured to identify runs of test
scenarios run by users belonging to different organizations on
software systems associated with the different organizations.
Optionally, the runs are identified based on activity data 353
obtained from monitoring the users.

In one embodiment, the route analyzer 356 is configured to
receive a certain run of a test scenario instantiated from a test
scenario template. Optionally, the route analyzer 356 may be
configured to receive many runs of test scenarios; the descrip-
tion below describes examples of what may happen with the
certain run. In one example, the certain run was run by a user
after being suggested the template via a user interface.
Optionally, the certain run of the test scenario was run on a
software system associated with a certain organization that
does not belong to the different organizations. Optionally, the
different organizations and the certain organization are asso-
ciated with different fields of operation (e.g., the different
organizations are in the insurance field, while the certain
organization is in the field of automobile manufacture). Alter-

10

15

20

25

30

35

40

45

50

55

60

65

8

natively, the different organizations and the certain organiza-
tion are associated with a same field of operation.

The test scenario template defines a template route that
instantiations of the template are supposed to follow. That is,
each run of a test scenario instantiated from the template is
supposed to reflect a certain sequence of elements, as defined
by the template route. Optionally, a divergent route that
diverges from a template route is characterized by a different
sequence of elements compared to sequence of elements
defined by the template route.

In one embodiment, based on the elements identified in the
certain run, the route analyzer 356 characterizes a route fol-
lowed by the certain run. The route analyzer 356 is also
configured to identify that the certain run follows a certain
divergent route that diverges from the template route. For
example, the route analyzer 356 may compare elements in the
template route with elements identified in the certain run in
order to determine whether the elements are similar and/or
appear in the same order as the elements in the template route.

In one embodiment, the route analyzer 356 is configured to
identify divergent routes that diverge from the template route
and later on converge back to the template route. Additionally
or alternatively, the route analyzer 356 is also configured to
identify divergent routes that diverge from the template route
and do not converge back to the template route. Additionally
or alternatively, the route analyzer is also configured to iden-
tify divergent routes that merge with the template route.

In one embodiment, if there is an essential difference
between the certain route and the template route the template
route it is considered a divergent route. For example, an
essential difference may be a single element that differs
between the certain route and the template route (e.g., a
screen in the certain route that is not in the template route, a
transaction in the template route that is not executed when
following the certain route). Optionally, an essential differ-
ence involves at least a certain number of elements and/or a
certain proportion of elements. For example, there may be an
essential difference between the certain route and the tem-
plate route if they differ on at least 5 elements and/or 15% of
the elements.

In one embodiment, the database 358 is configured to store
the certain divergent route identified by the route analyzer
356. Optionally, the database 358 may be configured to store
many divergent routes; the examples listed below describe
various possibilities for how the database 358 may handle the
certain divergent route.

In one example, each time a divergent route is identified in
a run of a test scenario, the divergent route is stored in the
database 358. Optionally, storing a divergent route involves
storing elements included in the divergent route, arun of a test
scenario that follows the divergent route, information pertain-
ing to a user that ran a test scenario that followed the divergent
route, and/or information pertaining to an organization asso-
ciated with a run of a test scenario that followed the divergent
route.

In another example, each time a divergent route is identi-
fied in a run of a test scenario, the route analyzer 356 and/or
the database 358 determine whether a route essentially the
same as the divergent route has been already stored. If no
essentially same divergent route has been stored, the diver-
gent route is stored.

In one embodiment, routes that are essentially the same
include the same sequence of screens. Optionally, routes that
are essentially the same have a same sequence of screens but
with different user keys. Optionally, routes that are essentially

US 9,311,224 B1

9

the same have a same sequence of screens but utilize different
default values for at least some of the fields displayed on the
screens.

Optionally, if an essentially same route has already been
stored once, then a certain counter associated to the divergent
route is incremented. Optionally, such a counter may be a
counter corresponding to runs following the divergent route,
a counter corresponding to users that ran runs following the
divergent route, and/or a counter corresponding to organiza-
tions associated with runs following the divergent route.

In one embodiment, the route counter 360 is configured to
count number of divergent routes stored in the database 358
that are essentially the same as the certain divergent route.
Optionally, the route counter 360 queries and/or searches the
database 358. Optionally, by processing results returned by
the search and/or query the route counter 360 is able to return
the number of number of divergent routes that are essentially
the same as the certain divergent route. For example, the route
counter 360 counts the number of divergent routes returned in
the search and/or query. Optionally, the route counter 360
bases the number of divergent routes that are essentially the
same as the certain divergent route on one or more values
returned by counters associated to divergent routes. For
example, given the certain divergent route, the route counter
360 returns a sum of counters associated with divergent
routes that are essentially the same as the certain divergent
route.

The template manipulator 362 is configured to manipulate
the test scenario template according to the divergent routes in
the database 358 that are essentially the same as the certain
divergent route, generating a manipulated template 363. In
one embodiment, the template manipulator 362 manipulates
the template only if the number of divergent routes stored in
the database 358 that are essentially the same as the certain
divergent route reaches a predetermined threshold.

In one embodiment, the predetermined threshold is
selected to have a certain value that signifies a likelihood of
general usefulness of a certain divergent route; thus, the fact
that the divergent routes essentially the same as the certain
divergent route have a sufficiently large utilization (as indi-
cated by reaching the predetermined threshold), indicates that
the divergent routes are likely to be useful for other organi-
zations too.

In one embodiment, the predetermined threshold may be a
fixed value. For example, two divergent routes, i.e., two dif-
ferent runs of test scenarios need to have been identified as
containing the essentially the same route as the certain diver-
gent route in order for the predetermined threshold to be
reached.

In another embodiment, the predetermined threshold may
be proportional to various factors such as the number of the
runs of the test scenarios, the number of users that ran the test
scenarios, and/or the number of organizations associated with
the runs of the test scenarios. In one example, the predeter-
mined threshold increases with the number of different orga-
nizations, thus for instance, if there are 10 different organi-
zations the predetermined threshold may be 3, but if there are
100 different organizations, the predetermined threshold may
be 10.

In one embodiment, manipulating a test scenario template
by the template manipulator 362 involves updating the tem-
plate so the manipulated template 363 is different from the
template prior to the updating. In one example, updating the
test scenario template may involve adding one or more ele-
ments found in the divergent routes to the test scenario tem-
plate. In another example, updating the test scenario template
may involve removing one or more elements found in the test

10

15

20

25

30

35

40

45

50

55

60

65

10

scenario template that are not found in the divergent routes. In
yet another, updating the test scenario template may involve
changing order of one or more elements found in the test
scenario template, according to an order of elements found in
the divergent routes.

In another embodiment, manipulating a test scenario tem-
plate by the template manipulator 362 involves generating a
new test scenario template based on the test scenario template
and one or more of the divergent routes, which is considered
the manipulated template 363. Thus, the manipulated tem-
plate 363 may refer to an updated template or a newly gener-
ated template, depending on what manipulation the template
manipulator 362 is configured to perform.

In one example, the test scenario template 794 illustrated in
FIG. 3 is updated according to divergent routes. In this
example, template 794 involves two transactions (denoted
“Tx1” and “Tx2” in FIG. 3) which include five screens (de-
noted “Scr 1” to “Scr 5” in FIG. 3). Based on runs of test
scenarios by different users from different organizations, it
may be determined that there is a route 796 that diverges from
the route of the template 794. According to the divergent
route, many users run an additional screen 795 belonging to
Tx1 (the screen 795 denoted by “Scr 77 in FIG. 3). Therefore,
the template 794 may be manipulated to create a manipulated
template 797 which includes the screen 795 in the appropriate
place. Optionally, the manipulated template 797 replaces the
template 794. Alternatively, the manipulated template 797
may be created in addition to the template 794.

In one embodiment, the computer system optionally
includes a data cleaner 366 configured to select a value from
the manipulated test scenario template 363, and remove the
selected value from the manipulated template 363 if the
selected value does not appear in runs of test scenarios that
follow at least two divergent routes that are essentially the
same as the certain divergent route. Optionally, the data
cleaner 366 is also configured to check that the at least two
divergent routes are associated with at least two different
organizations. For example, there is at least a first run of a test
scenario that follows a first registered divergent route that is
essentially the same as the certain divergent route; there is at
least a second run of a test scenario that follow a first divergent
route that is essentially the same as the certain divergent route
that follows a second registered divergent route that is essen-
tially the same as the certain divergent route; and a first
organization is associated with the first run, and a second
different organization, is associated with the second run.

In another embodiment, the computer system optionally
includes a ranking module 364 configured to rank templates,
such as, the manipulated test scenario template 363. Option-
ally, ranking the manipulated template 363 is done according
to the number of its corresponding divergent routes. For
example, the more divergent routes corresponding to a
manipulated template 363, the higher the manipulated tem-
plate 363 is ranked. In one example, ranking involves order-
ing templates according to number of their corresponding
divergent routes. In another example, ranking involves
assigning templates scores proportional to the number of their
corresponding divergent routes. In still another example,
ranking involves ordering templates according to number of
different organizations corresponding to the divergent routes.
The larger the number of organizations associated with runs
that had divergent routes found to be essentially the same as a
route corresponding to the manipulated template 363, the
higher the rank of the manipulated template 363.

In one embodiment, the computer system optionally
includes a monitoring module 352 that is configured to moni-

US 9,311,224 B1

11

tor the users 350 belonging to the different organizations and
to the activity data 353 obtained from monitoring the users
350 to the test identifier 354.

In another embodiment, the computer system optionally
includes a user interface 368 configured to suggest to auser to
run an instantiation manipulated test scenario template.
Optionally, the user interface 368 may initiate the instantia-
tion of the manipulated test scenario template; for example,
the user interface 368 may present a first screen belonging to
the manipulated test scenario template and prompt a user to
take a certain action to advance execution.

In one embodiment, the route analyzer 356 is configured to
receive a run of a test scenario this is instantiated from a first
test scenario template. The first test scenario template defines
a first template route that instantiations of the first test sce-
nario template are supposed to follow. The route analyzer 356
is also configured to determine whether the run follows a
certain divergent route that diverges from the first template
route. Optionally, if the it is determined that the run does
follow the certain divergent route, the certain divergent route
is stored in the database 358.

In one embodiment, the route counter 360 is configured to
receive a second template route belonging to a second test
scenario template. For example, there is a second run of a test
scenario that is an instantiation of the second test scenario
template; the second run follows a second template route
defined by the second test scenario template. Optionally, the
second test scenario template is associated with a certain
organization that does not belong to the different organiza-
tions; for example, a user belonging to the certain organiza-
tion ran the run of the second test scenario. Optionally, the
route counter 360 is also configured to count number of
divergent routes in the database 358 that are similar to second
template route.

In one embodiment, the template manipulator 362 is con-
figured to manipulate the second test scenario template
according to the divergent routes in the database that are
similar to the second template route. Optionally, the template
manipulator 362 performs the manipulation if the number of
divergent routes reaches a predetermined threshold. Option-
ally, the template manipulator 362 is also configured not to
manipulate the second test scenario template according to the
divergent routes if the number does not reach the predeter-
mined threshold.

In one example, the software systems are screen based, and
similar divergent routes start from, and end with, the same
screens. In another example, the software systems are screen
based, and similar divergent routes have the same chain of
screens but with different user keys. In still another example,
similar divergent routes have the same sequence of screens,
but possibly utilize different default values for at least some
fields displayed on the screens.

Itis to be noted that different embodiments may implement
components of the computer systems illustrated in FIG. 1
and/or FIG. 2 in different ways. For example, in some
embodiments one or more of the following may be imple-
mented by the same software module and/or software mod-
ules running on the same processor: the monitoring module
352, the test identifier 354, the route analyzer 356, the data-
base 358, the route counter 360, the template manipulator
362, the ranking module 364, the data cleaner 366, and the
user interface 368. Optionally, one or more of the aforemen-
tioned components may be implemented on a remote server,
such as a cloud-based server.

In one example, the route analyzer 356 and/or the route
counter 360 are implemented, at least in part, as part of the
database 358. For example, they may involve software mod-

30

40

45

55

12

ules that belong to the database 358. In another example, the
route analyzer 356 and the route counter 360 are implemented
by the same software module that interacts with the database
358. Inyet another example, the ranking module 364 is imple-
mented as part of the template manipulator 362.

In one embodiment, the test identifier 354, the route ana-
lyzer 356, the database 358, the route counter 360, and/or the
template manipulator are implemented as a cloud-based ser-
vice that receives the activity data 353 of the users and
manipulates templates to better suit the needs of the users. For
example, the manipulated routes may test elements in a new
and/or different way. Optionally, the ranking module 364
and/or the data cleaner 366 may also be part of the cloud-
based service.

FIG. 4 illustrates one embodiment of a computer imple-
mented method for utilizing divergent routes identified in
runs of test scenarios to manipulate a test scenario template.
The illustrated embodiment includes the following steps:

In step 371, identifying runs of test scenarios run by users
belonging to the different organizations on software systems
associated with the different organizations.

In step 372, receiving a certain run of a test scenario instan-
tiated from a test scenario template; the certain run of the test
scenario was run on a software system associated with a
certain organization that is not one of the different organiza-
tions. Optionally, the different organizations and the certain
organization are associated with different fields of operation.
Alternatively, the different organizations and the certain orga-
nization are associated with a same field of operation.

Optionally, the test scenario template defines a template
route that instantiations of the template are supposed to fol-
low. Optionally, the template route includes a sequence of one
or more elements involved in running an instantiation of the
template. Optionally, an element may be a test step, a trans-
action, or a screen.

In step 373, identifying that the certain run follows a certain
divergent route that diverges from the template route. Option-
ally, a divergent route is characterized by a different sequence
of'elements compared to sequence of elements defined by the
template route.

In step 374, storing the certain divergent route in the data-
base 358.

In step 375, counting number of divergent routes in the
database 358 that are essentially the same as the certain diver-
gent route.

And in step 377, if the number reaches a predetermined
threshold, manipulating the test scenario template according
to the divergent routes in the database that are essentially the
same as the certain divergent route. Optionally, the predeter-
mined threshold is selected such that reaching the predeter-
mined threshold indicates that the essentially the same diver-
gent routes are also likely to be useful for other organizations.
Optionally, the predetermined threshold is at least two diver-
gent routes.

Optionally, if the number does not reach the predetermined
threshold, step 377 involves refraining from manipulating the
test scenario template according to the divergent routes. Not
reaching the predetermined threshold indicates that the diver-
gent routes are not likely to be a suitable option for an orga-
nization associated with runs that follow the certain divergent
route. Additionally, a number that does not reach the prede-
termined threshold may indicate that the divergent routes are
too specific, and are likely useful primarily for the organiza-
tions that ran them.

In one embodiment, manipulating the test scenario tem-
plate according to the divergent routes involves updating the
test scenario template according to one or more of the diver-

US 9,311,224 B1

13

gent routes; for example, a new screen belonging to the diver-
gent routes, which did not appear in the template, is added to
the test scenario template.

In another embodiment, manipulating the test scenario
template according to the divergent routes involves generat-
ing a new test scenario template based on the test scenario
template and one or more of the divergent routes. For
example, elements from the divergent routes are combined
with elements in the existing test scenario template in order to
generate a new template with a combination of elements that
is not possessed by the test scenario template and possibly any
of the divergent routes.

In one embodiment, identifying in the runs divergent routes
in step 373 involves identifying divergent routes that diverge
from the template route and later on converge back to the
template route. Additionally or alternatively, identifying in
the runs divergent routes in step 373 involves identifying
divergent routes that diverge from the template route and do
not converge back to the template route. Additionally or alter-
natively, identifying in the runs divergent routes in step 373
involves identifying divergent routes that merge with the tem-
plate route.

In one embodiment, the computer implemented method
includes an additional optional step 378 involving suggesting
to a user to run an instantiation of the updated test scenario
template. For example, the user interface 368 may utilized to
present the updated template to the user.

In one embodiment, the computer implemented method
includes an optional step 370, which involves monitoring the
users and providing data obtained from the monitoring for use
in the identifying of the runs of test scenarios.

In another embodiment, the computer implemented
method includes an optional step 377 that involves selecting
a value from the manipulated test scenario template, and
removing the selected value from the manipulated test sce-
nario template if the selected value does not appear in runs
that follow at least two of the divergent routes. Optionally,
step 377 also involves testing that the at least two of the
divergent routes are associated with at least two different
organizations.

In one embodiment, the computer implemented method
illustrated in FIG. 4 includes an optional step of ranking the
manipulated test scenario template according to the number
of'the divergent routes. Additionally or alternatively, ranking
the manipulated test scenario template may be according to
the number of different organizations associated with the
divergent routes.

FIG. 5 illustrates another embodiment of a computer
implemented method for utilizing divergent routes identified
in runs of test scenarios to manipulate a test scenario tem-
plate. The illustrated embodiment includes the following
steps:

In step 381, identifying runs of test scenarios run by users
belonging to the different organizations on software systems
associated with the different organizations.

In step 382, receiving a certain run of a test scenario instan-
tiated from a first test scenario template; the first test scenario
template defines a first template route that instantiations of
the firsttest scenario template are supposed to follow. Option-
ally, the first template route includes a sequence of one or
more elements involved in running an instantiation of the first
template. Optionally, an element may be a test step, a trans-
action, or a screen.

Instep 383, identifying that the certain run follows a certain
divergent route that diverges from the first template route.

10

15

20

25

30

35

40

45

50

55

60

65

14

Optionally, a divergent route is characterized by a different
sequence of elements compared to sequence of elements
defined by the template route.

In step 384, storing the certain divergent route in the data-
base 358.

In step 385, receiving a second template route belonging to
a second test scenario template; the second test scenario tem-
plate is associated with an organization that does not belong
to the different organizations. Optionally, receiving the sec-
ond template route involves receiving elements included in
the second template route. Additionally or alternatively,
receiving the second template route may involve receiving the
second test scenario template that defines the second template
route. Additionally or alternatively, receiving the second tem-
plate route may involve receiving a run of a test scenario that
follows the second template route, such as a run that is an
instantiation of the second template route.

In step 386, counting number of divergent routes in the
database 358 that are essentially the same as the second
template route.

And in step 387, if the number reaches a predetermined
threshold, manipulating the test scenario template according
to the divergent routes in the database that are essentially the
same as the second template route. Optionally, the predeter-
mined threshold is selected such that reaching the predeter-
mined threshold indicates that the essentially the divergent
routes are also likely to be useful for other organizations.
Optionally, the predetermined threshold is at least two diver-
gent routes.

Optionally, if the number does not reach the predetermined
threshold, step 387 involves refraining from manipulating the
test scenario template according to the divergent routes. Not
reaching the predetermined threshold indicates that the diver-
gent routes are not likely to be a suitable option for an orga-
nization associated with runs that follow the certain divergent
route. Additionally, a number that does not reach the prede-
termined threshold may indicate that the divergent routes are
too specific, and are likely useful primarily for the organiza-
tions that ran them.

Inone embodiment, identifying in the runs divergent routes
in step 383 involves identifying divergent routes that diverge
from the template route and later on converge back to the
template route. Additionally or alternatively, identifying in
the runs divergent routes in step 383 involves identifying
divergent routes that diverge from the template route and do
not converge back to the template route. Additionally or alter-
natively, identifying in the runs divergent routes in step 383
involves identitying divergent routes that merge with the tem-
plate route.

In one embodiment, the computer implemented method
includes an additional optional step 389 involving suggesting
to a user to run an instantiation of the updated test scenario
template. For example, a user interface may utilized to
present the updated template to the user.

In one embodiment, the computer implemented method
includes an optional step 380, which involves monitoring the
users and providing data obtained from the monitoring for use
in the identifying of the runs of test scenarios.

In another embodiment, the computer implemented
method includes an optional step 388 that involves selecting
a value from the manipulated test scenario template, and
removing the selected value from the manipulated test sce-
nario template if the selected value does not appear in runs
that follow at least two of the divergent routes. Optionally,
step 388 also involves testing that the at least two of the
divergent routes are associated with at least two different
organizations.

US 9,311,224 B1

15

In one embodiment, the computer implemented method
illustrated in FIG. 5 includes an optional step of ranking the
manipulated test scenario template according to the number
of'the divergent routes. Additionally or alternatively, ranking
the manipulated test scenario template may be according to
the number of different organizations associated with the
divergent routes.

In one embodiment, a non-transitory computer-readable
medium stores program code that may be used by a computer
to utilize divergent routes identified in runs of test scenarios to
manipulate a test scenario template. The computer includes a
processor, and the non-transitory computer-readable medium
stores the following program code:

Program code for identifying runs of test scenarios run by
users belonging to the different organizations on software
systems associated with the different organizations.

Program code for receiving a certain run of a test scenario
run on a software system associated with a certain organiza-
tion that does not belong to the different organizations; the
certain run is instantiated from a test scenario template and
the test scenario template defines a template route that instan-
tiations of the test scenario template are supposed to follow.

Program code for identifying that the certain run follows a
certain divergent route that diverges from the template route.

Program code for storing the certain divergent route in a
database.

Program code for counting number of divergent routes in
the database that are essentially the same as the certain diver-
gent route.

And program code for manipulating the test scenario tem-
plate according to the divergent routes in the database that are
essentially the same as the certain divergent route if the num-
ber reaches a predetermined threshold.

In one embodiment, the program code for manipulating the
test scenario template according to the divergent routes
includes program code for updating the test scenario template
according to one or more of the divergent routes.

In another embodiment, the program code for manipulat-
ing the test scenario template according to the divergent
routes include program code for generating a new test sce-
nario template based on the test scenario template and one or
more of the divergent routes.

In one embodiment, the program code stored in the non-
transitory computer-readable medium optionally includes
program code for refraining from manipulating the test sce-
nario template according to the divergent routes if the number
does not reach the predetermined threshold. Not reaching the
predetermined threshold indicates that the divergent routes
are not likely to be a suitable alternative to the second tem-
plate route, for other organizations.

In one embodiment, the program code stored in the non-
transitory computer-readable medium optionally includes
program code for selecting a value from the manipulated test
scenario template, and removing the selected value from the
manipulated test scenario template if the selected value does
not appear in runs that follow at least two of the divergent
routes. Optionally, the program code also involves testing that
the at least two of the divergent routes are associated with at
least two different organizations.

In another embodiment, a non-transitory computer-read-
able medium stores program code that may be used by a
computer to utilize divergent routes identified in runs of test
scenarios to manipulate a test scenario template. The com-
puter includes a processor, and the non-transitory computer-
readable medium stores the following program code:

10

15

20

25

30

35

40

45

50

55

60

65

16

Program code for identifying runs of test scenarios run by
users belonging to the different organizations on software
systems associated with the different organizations.

Program code for receiving a certain run of a test scenario;
the certain run is instantiated from a first test scenario tem-
plate and the first test scenario template defines a first tem-
plate route that instantiations of the first test scenario template
are supposed to follow.

Program code for identifying that the certain run follows a
certain divergent route that diverges from the first template
route.

Program code for storing the certain divergent route in a
database.

Program code for receiving a second template route
belonging to a second test scenario template. The second test
scenario template is associated with an organization that does
not belong to the different organizations.

Program code for counting number of divergent routes in
the database that are essentially the same as the second tem-
plate route.

And program code for manipulating the second test sce-
nario template according to the divergent routes in the data-
base that are essentially the same as the second template route
if the number reaches a predetermined threshold.

In one embodiment, the program code for manipulating the
second test scenario template according to the divergent
routes includes program code for updating the second test
scenario template according to one or more of the divergent
routes.

In another embodiment, the program code for manipulat-
ing the second test scenario template according to the diver-
gent routes includes program code for generating a new test
scenario template based on the second test scenario template
and one or more of the divergent routes.

In one embodiment, the program code stored in the non-
transitory computer-readable medium optionally includes
program code for refraining from manipulating the second
test scenario template according to the divergent routes if the
number does not reach the predetermined threshold. Not
reaching the predetermined threshold indicates that the diver-
gent routes are not likely to be a suitable alternative to the
second template route, for other organizations.

In one embodiment, the program code stored in the non-
transitory computer-readable medium optionally includes
program code for selecting a value from the manipulated
second test scenario template, and removing the selected
value from the manipulated second test scenario template if
the selected value does not appear in runs that follow at least
two of'the divergent routes. Optionally, the program code also
involves testing that the at least two of the divergent routes are
associated with at least two different organizations.

FIG. 6 and FIG. 7 illustrate embodiments of a computer
system configured to utilize routes followed by runs of test
scenarios to manipulate a test scenario template. The illus-
trated embodiments include at least a test identifier 354, a
route analyzer 391, a database 392, a route retriever 393, a
subset selector 394, and a template manipulator 395.

Herein, a route defines a sequence of one or more elements
involved in a run of a test scenario; an element may be a test
step, a transactions, or a screen. Additionally, a test scenario
template may define a template route that instantiations of the
template are supposed to follow. Thus, a run of a test scenario
based on a template is expected to reflect the template route;
for example, the run may describe screens and/or transactions
included in the template route.

The test identifier 354 is configured to identify runs of test
scenarios run by users belonging to different organizations on

US 9,311,224 B1

17

software systems associated with the different organizations.
Optionally, the runs are identified from activity data 353
obtained from monitoring the users.

In one embodiment, the route analyzer 391 is configured to
receive a run of a test scenario and to identify a route that the
run follows; the run may be one of the runs identified by the
test identifier 354. Optionally, the route analyzer 391 identi-
fies in the run certain elements that may include test steps
executed while running the test scenario, transactions and/or
businesses executed while running the test scenario, and/or
screens presented to a user running the test scenario. The
certain elements may also be used to describe the route. In this
case, the run may be referred to as “following the route”.

Optionally, the route analyzer 391 may identify multiple
routes that the run follows. For example, the multiple routes
may contain different types of elements; e.g., a first route may
include screens, while a second route may include transac-
tions. Thus, the run be referred to as following both routes.
Additionally or alternatively, the route analyzer 391 may
include in aroute a subset of the elements identified in the run.
For example, the route analyzer 391 may exclude certain
screens from a route if those screens are utilized only by one
organization and/or contain primarily proprietary data.

In one embodiment, the database 392 is configured to store
the routes identified by the route analyzer 391. Optionally, at
least some of the functionality of the route analyzer 391 is
performed by the database 392; for example, part of the
identification of routes is performed by software and/or hard-
ware that is part of the database (e.g., running on a server
belonging to the database 392), and/or is controlled by the
database (e.g., a module of the database 392 may control
some of the processes performed by the route analyzer 391).

In one example, each time a route is identified in a run of a
test scenario, the route is stored in the database 392. Option-
ally, storing a route involves storing elements included in the
route, a run of a test scenario that follows the route, informa-
tion pertaining to a user that ran a test scenario that followed
the route, and/or information pertaining to an organization
associated with a run of a test scenario that followed the
divergent route.

In another example, each time a route is identified in a run
of a test scenario, the route analyzer 391 and/or the database
392 determine whether another route essentially the same as
the route has been already stored. If no essentially same route
has already been stored, the route is stored in the database
392.

Optionally, if another essentially same route has already
been stored, then a certain counter associated to the already
stored route is incremented. Optionally, such a counter may
be a counter corresponding to runs following the stored route,
a counter corresponding to users that ran runs following the
stored route, and/or a counter corresponding to organizations
associated with runs following the stored route.

The route retriever 393 is configured to receive a certain
template route 390 belonging to a test scenario template and
to retrieve from the database 392 divergent routes that diverge
from the template route 390. The test scenario template
defines the template route 190, which is a route that instan-
tiations of the template are supposed to follow. That is, each
run of a test scenario instantiated from the template is sup-
posed to reflect a certain sequence of elements, as defined by
the route. Optionally, the route retriever 393 receives the test
scenario template to which the route 390 belongs, and derives
the route 390 from the template. Additionally and or alterna-
tively, the route retriever 393 may receive a representation of
the template route 390.

10

20

30

40

45

55

18

Inone embodiment, at least some of the functionality of the
route retriever 393 is performed by the database 392; for
example, part of the identification of divergent routes is per-
formed by software and/or hardware that is part of the data-
base (e.g., running on a server belonging to the database 392),
and/or is controlled by the database (e.g., a module of the
database 392 may control some of the processes performed
by the route retriever 393).

In one embodiment, the test scenario template received by
the route retriever 393 is associated with a certain organiza-
tion that does not belong to the different organizations.
Optionally, a test scenario template may be considered asso-
ciated with an organization if a user belonging to the organi-
zation ran an instantiation of the template and/or is intended
to run an instantiation of the template. Additionally or alter-
natively, a test scenario template may be considered associ-
ated with an organization if the template was generated based
on one or more runs of test scenarios that are associated with
the organization. Optionally, the different organizations and
the certain organization are associated with different fields of
operation (e.g., the different organizations are in the insur-
ance field, while the certain organization is in the field of
automobile manufacture). Alternatively, the different organi-
zations and the certain organization are associated with a
same field of operation.

Based on the elements included in the template route 390,
the route retriever 393 may identify in the database 392 routes
that diverge from the template route 390, and as such are
considered divergent routes with respect to the template route
390. Optionally, a divergent route that diverges from a tem-
plate route 390 is characterized by a different sequence of
elements compared to sequence of elements defined by the
template route 390. For example, the route retriever 393 may
compare elements in the template route 390 with elements
belonging to runs in the database 392 in order to determine
whether some elements being compared are similar and/or
appear in the same order as the elements in the template route
390.

In one embodiment, the route retriever 393 is configured to
identify divergent routes that diverge from the template route
390 and later on converge back to the template route 390.
Additionally or alternatively, the route retriever 393 may also
be configured to identify divergent routes that diverge from
the template route 390 and do not converge back to the tem-
plate route 390. Additionally or alternatively, the route
retriever 393 may be also configured to identify divergent
routes that merge with the template route 390.

In one embodiment, an essentially exhaustive search is
performed in the database to identify the divergent routes.
Optionally, essentially all routes stored in the database 392
are evaluated and/or considered when searching for the diver-
gent routes.

In another embodiment, searching for the divergent routes
in the database 392 involves evaluating and/or considering a
portion of the routes stored in the database (e.g., randomly
selecting 10% of the routes in the database 392 and examining
them to identify the divergent routes). Optionally, at least
some routes belonging to the portion of the routes represent
other routes (e.g., they are representatives of groups of related
routes). Thus, if a representative route is deemed a divergent
route, or close to being a divergent route, other routes in its
group may be evaluated too.

In another embodiment, searching for the divergent routes
in the database 392 involves filtering routes in the database
according to elements in the template route 390. For example,
the database 392 may be queried for routes that include a

US 9,311,224 B1

19

certain element belonging to the template route 390, and only
routes containing the certain element are evaluated.

The subset selector 394 is configured to select from the
divergent routes retrieved by the route retriever 393 a subset
of divergent routes that are similar to each other. Optionally,
the routes belonging to the subset are essentially the same.
Optionally, the subset includes all the divergent routes
retrieved by the route retriever 393. Alternatively, the subset
includes at least one of the divergent routes, and at least one
divergent route is not included in the subset. Optionally, the
subset includes exactly one divergent route; alternatively, the
subset may include two or more divergent routes.

In one embodiment, the subset includes divergent routes
that are similar to each other, according to some measure of
similarity. Optionally, the divergent routes in the subset are
less similar to other divergent routes not in the subset, accord-
ing the measure of similarity. In one example, the software
systems are screen based, and similar divergent routes start
from, and end with, the same screens. In another example, the
software systems are screen based, and similar divergent
routes have the same chain of screens but with different user
keys. In still another example, similar divergent routes have
the same changes in relation to the template route from which
they arrived.

In one example, divergent routes belonging to the subset
have a certain number of elements in common. For example,
all divergent routes in the subset share a number of common
screens. In another example, divergent routes belonging to
the subset all have a minimal pairwise similarity between
pairs of divergent routes in the subset. For example, the angle
between a vector representation of any two divergent routes in
the subset is smaller than a certain threshold. In yet another
example, divergent routes returned by the route retriever 393
are clustered and the subset selector 394 selects a certain
cluster of divergent routes as the subset.

In one embodiment, the subset selector 394 compares the
divergent routes retrieved by the route retriever 393 to the
template route 390, and includes in the subset only divergent
routes that show at least a certain level of similarity to the
template route 390. For example, all divergent routes must
share a certain number of elements with the template route
390 (in addition to being similar to each other).

The template manipulator 395 is configured to manipulate
the test scenario template according to the subset of divergent
routes if the size of the subset reaches a predetermined thresh-
old. A result of the manipulation may be a manipulated tem-
plate 399. Optionally, the template manipulator 395 is also
configured not to manipulate the test scenario template
according to subset if the size of the subset does not reach the
predetermined threshold.

In one embodiment, the predetermined threshold is
selected to have a certain value that signifies a likelihood of
general usefulness of divergent routes belonging to the sub-
set; thus, the fact that the divergent routes in the subset have a
sufficiently large utilization (as indicated by the size of the
subset), indicates that the divergent routes in the subset are
likely to be useful for other organizations too. If the subset is
too small, this may indicate that the routes in the subset are
utilized by a small number of users and/or organizations, and
thus are not likely useful for other organizations.

In one embodiment, the predetermined threshold may be a
fixed value. For example, a subset of at least two divergent
routes. In another embodiment, the predetermined threshold
may be proportional to various factors such as the number of
the runs of the test scenarios, the number of users that ran the
test scenarios, and/or the number of organizations associated
with the runs of the test scenarios. In one example, the pre-

10

15

20

25

30

35

40

45

50

55

60

65

20

determined threshold increases with the number of different
organizations, thus for instance, if there are 10 different orga-
nizations the predetermined threshold may be a subset of at
least size 3, but if there are 100 different organizations, the
predetermined threshold may be a subset of at least 10 diver-
gent routes.

In one embodiment, manipulating a test scenario template
by the template manipulator 395 involves updating the tem-
plate so the manipulated template 399 is different from the
template prior to the updating. In one example, updating the
test scenario template may involve adding one or more ele-
ments found in the divergent routes in the subset to the test
scenario template. Optionally, the one or more elements that
are added are part of at least a predetermined proportion of the
divergent routes belonging to the subset (e.g., the added ele-
ments appear in at least 50% of the divergent routes in the
subset). Optionally, the one or more elements that are added
are part of all the divergent routes belonging to the subset. In
another example, updating the test scenario template may
involve removing one or more elements found in the test
scenario template that are not found in the divergent routes in
the subset. Optionally, the one or more elements that are
removed are not part of at least a predetermined proportion of
the divergent routes belonging to the subset (e.g., the added
elements appear in less than 50% of'the divergent routes in the
subset). Optionally, the one or more elements that are remove
do not appear in any of the divergent routes belonging to the
subset. In yet another, updating the test scenario template may
involve changing order of one or more elements found in the
test scenario template, according to an order of elements
found in the divergent routes in the subset.

In another embodiment, manipulating a test scenario tem-
plate by the template manipulator 395 involves generating a
new test scenario template based on the test scenario template
and one or more of the divergent routes in the subset. For
example, the new template may include at least some of the
elements from the test scenario template and at least some
elements from divergent routes belonging to the subset.
Optionally, the new template is generated by copying a per-
vious template and updating the copy.

In one embodiment, the computer system may optionally
include a data cleaner 397 configured to select a value from
the manipulated test scenario template 399, and remove the
selected value from the manipulated template 399 if the
selected value does not appear in runs of test scenarios that
follow at least two divergent routes that are essentially the
same as the certain divergent route. Optionally, the data
cleaner 397 is also configured to check that the at least two
divergent routes are associated with at least two different
organizations. For example, there is at least a first run of a test
scenario that follows a first registered divergent route that is
essentially the same as the certain divergent route; there is at
least a second run of a test scenario that follow a first divergent
route that is essentially the same as the certain divergent route
that follows a second registered divergent route that is essen-
tially the same as the certain divergent route. Additionally, a
first organization is associated with the first run, and a second
different organization, is associated with the second run.
Optionally, the manipulated template 399 may refer to an
updated template or a newly generated template, depending
on what manipulation the template manipulator 395 is con-
figured to perform.

In one embodiment, the computer system may also option-
ally include a monitoring module 352 that is configured to
monitor the users 350 belonging to the different organizations
and to provide the activity data 353 obtained from monitoring
the users 350 to the test identifier 354.

US 9,311,224 B1

21

In another embodiment, the computer system may also
optionally include a user interface 398 configured to suggest
to a user to run an instantiation manipulated test scenario
template. Optionally, the user interface 398 may initiate the
instantiation of the manipulated test scenario template; for
example, the user interface 398 may present a first screen
belonging to the manipulated test scenario template and
prompt a user to take a certain action to advance execution.

In another embodiment, the computer system may also
optionally include a ranking module 396 configured to rank
templates, such as, the manipulated test scenario template
399. Optionally, ranking the manipulated template 399 is
done according to the size of the subset of divergent routes
selected by the subset selector 394; for example, the larger the
subset, the higher the manipulated template 399 is ranked. In
one example, ranking involves ordering templates according
to size of their corresponding subset of divergent routes. In
another example, ranking involves assigning templates scores
proportional to the size of their corresponding subset of diver-
gent routes. In still another example, ranking involves order-
ing templates according to number of different organizations
associated with routes belonging to their corresponding sub-
sets. The larger the number of organizations associated with
runs that followed divergent routes in a subset, the higher the
rank of the manipulated template 399.

Itis to be noted that different embodiments may implement
components of the computer systems illustrated in FIG. 6
and/or FIG. 7 in different ways. For example, in some
embodiments one or more of the following may be imple-
mented by the same software module and/or software mod-
ules running on the same processor: the monitoring module
352, the test identifier 354, the route analyzer 391, the data-
base 392, the route retriever 393, the subset selector 394, the
template manipulator 395, the ranking module 396, the data
cleaner 397, and the user interface 398. Optionally, one or
more of the aforementioned components may be imple-
mented on a remote server, such as a cloud-based server.

In one example, the route analyzer 391, the route retriever
393, and/or the subset selector 394 may be implemented, at
least in part, as part of the database 392. For example, they
may involve software modules that belong to the database
392. In another example, the route analyzer 391, the route
retriever 393, and/or the subset selector 394 may be imple-
mented by the same software module that interacts with the
database 392. In yet another example, the ranking module 396
and/or the data cleaner 397 are implemented as part of the
template manipulator 395.

In one embodiment, the test identifier 354, the route ana-
lyzer 391, the database 392, the route retriever 393, the subset
selector 394, and/or the template manipulator 395, are imple-
mented as a cloud-based service that receives the activity data
353 of the users and manipulates templates to better suit the
needs of the users. For example, the manipulated routes may
test elements in a new and/or different way. Optionally, the
ranking module 396 and/or the data cleaner 397 may also be
part of the cloud-based service.

FIG. 8 illustrates one embodiment of a computer imple-
mented method for utilizing routes followed by runs of test
scenarios to manipulate a test scenario template. The illus-
trated embodiment includes the following steps:

In step 401, identifying runs of test scenarios run by users
belonging to different organizations on software systems
associated with the different organizations.

In step 402, receiving a certain run of a test scenario; the
certain run may be one of the runs identified in step 401.

In step 403, identifying a route that the certain run follows.
Optionally, a route defines a sequence of one or more ele-

10

20

25

30

40

45

50

55

60

65

22

ments involved in running a test scenario. Optionally, an
element is selected from the group consisting of test steps,
transactions, and screens.

In step 404, storing route in the database 392.

In step 405, receiving a certain template route belonging to
a test scenario template; the test scenario template is associ-
ated with a certain organization that does not belong to the
different organizations. Optionally, the different organiza-
tions and the certain organization are associated with differ-
ent fields of operation. For example, the certain organization
is in the travel business, while the different organizations are
in finances, health services, or automobile manufacturing.
Alternatively, the different organizations and the certain orga-
nization are associated with a same field of operation. For
example, they all operate in the field of internet commerce.

In step 406, retrieving from the database 392 divergent
routes that diverge from the template route. Optionally, a
divergent route is characterized by a different sequence of
elements compared to sequence of elements defined by the
template route. Optionally, the divergent routes involve iden-
tifying routes that diverge from the template route and later on
converge back to the template route. Additionally or alterna-
tively, retrieving the divergent routes may involve identifying
routes that diverge from the template route and do not con-
verge back to the template route. Additionally or alternatively,
retrieving the divergent routes may involve identifying diver-
gent routes that merge with the template route.

In step 407, selecting from the divergent routes a subset of
divergent routes that are similar to each other.

And in step 408, if the size of the subset reaches a prede-
termined threshold, manipulating the test scenario template
according to the subset. Optionally, the predetermined thresh-
old is selected such that reaching the predetermined threshold
indicates that the essentially the divergent routes belonging to
the subset are also likely to be useful for other organizations.
Optionally, the predetermined threshold is at least two diver-
gent routes.

Optionally, if the size of the subset does not reach the
predetermined threshold, step 408 involves refraining from
manipulating the test scenario template according to the sub-
set. Not reaching the predetermined threshold indicates that
the divergent routes are not likely to be a suitable option for an
organization associated with runs that follow the certain
divergent route. Additionally, a number that does not reach
the predetermined threshold may indicate that the divergent
routes are too specific, and are likely useful primarily for the
organizations that ran them.

In one embodiment, manipulating the test scenario tem-
plate according to the subset involves updating the test sce-
nario template according to one or more of the divergent
routes in the subset; for example, a new screen belonging to
the divergent routes in the subset, which did not appear in the
template, is added to the test scenario template.

In another embodiment, manipulating the test scenario
template according to the subset involves generating a new
test scenario template based on the test scenario template and
one or more of the divergent routes belonging to the subset.
For example, elements from the divergent routes in the subset
are combined with elements in the existing test scenario tem-
plate in order to generate a new template with a combination
of'elements that is not possessed by the test scenario template
and possibly any of the divergent routes in the subset.

In one embodiment, the computer implemented method
includes an additional optional step 410 involving suggesting
to a user to run an instantiation of the updated test scenario
template. For example, the user interface 398 may utilized to
present the updated template to the user.

US 9,311,224 B1

23

In one embodiment, the computer implemented method
includes an optional step 400, which involves monitoring the
users and providing the activity data 353 obtained from the
monitoring for use in the identifying of the runs of test sce-
narios.

In another embodiment, the computer implemented
method includes an optional step 409 that involves selecting
a value from the manipulated test scenario template, and
removing the selected value from the manipulated test sce-
nario template if the selected value does not appear in runs
that follow at least two of the divergent routes belonging to the
subset. Optionally, step 409 also involves testing that the at
least two of the divergent routes are associated with at least
two different organizations.

In one embodiment, the computer implemented method
illustrated in FIG. 8 includes an optional step of ranking the
manipulated test scenario template according to the number
of the divergent routes belonging to the subset. Additionally
or alternatively, ranking the manipulated test scenario tem-
plate may be done according to the number of different orga-
nizations associated with the divergent routes belonging to
the subset.

In one embodiment, a non-transitory computer-readable
medium stores program code that may be used by a computer
to utilize routes followed by runs of test scenarios to manipu-
late a test scenario template. The computer includes a proces-
sor, and the non-transitory computer-readable medium stores
the following program code:

Program code for identifying runs of test scenarios run by
users belonging to different organizations on software sys-
tems associated with the different organizations.

Program code for receiving a certain run of a test scenario.

Program code for identifying a route that the run follows.

Program code for storing the route in a database.

Program code for receiving a certain template route
belonging to a test scenario template. Optionally, the test
scenario template is associated with a certain organization
that does not belong to the different organizations.

Program code for retrieving from the database divergent
routes that diverge from the template route.

Program code for selecting from the divergent routes a
subset of divergent routes that are similar to each other.

And program code for manipulating the test scenario tem-
plate according to the subset if the size of the subset reaches
a predetermined threshold.

In one embodiment, the program code for manipulating the
test scenario template according to the subset includes pro-
gram code for updating the test scenario template according
to one or more of the divergent routes belonging to the subset.

In another embodiment, the program code for manipulat-
ing the test scenario template according to the subset includes
program code for generating a new test scenario template
based on the test scenario template and one or more of the
divergent routes belonging to the subset.

In one embodiment, the program code stored in the non-
transitory computer-readable medium optionally includes
program code for refraining from manipulating the test sce-
nario template according to the subset if the size of the subset
does not reach the predetermined threshold. Not reaching the
predetermined threshold indicates that the divergent routes
belonging to the subset are not likely to be a suitable alterna-
tive to the template route, for other organizations.

In one embodiment, the program code stored in the non-
transitory computer-readable medium optionally includes
program code for selecting a value from the manipulated test
scenario template, and removing the selected value from the
manipulated test scenario template if the selected value does

10

20

25

30

35

40

45

50

55

60

65

24

not appear in runs that follow at least two of the divergent
routes belonging to the subset. Optionally, the program code
also involves testing that the at least two of the divergent
routes are associated with at least two different organizations.

Monitoring Users and Identitying Runs

Some of the disclosed embodiments involve software sys-
tems that may be characterized as being data-oriented large-
scale software systems. Examples of data-oriented large-
scale software systems include Enterprise Resource Planning
(ERP), such as from the following trademarks: SAP, Oracle
Application, The Sage Group, Microsoft Dynamics, and SSA
Global Technologies; billing systems (also known as revenue
management) such as from the following trademarks:
Amdocs, Comverse Inc., and Convergys Corporation; service
management systems; and portfolio management systems.
Installing, upgrading, and/or maintaining such systems
require running many tests in order to validate the systems’
behavior.

Inthis disclosure, users are often referred to as being moni-
tored. This monitoring typically concerns activity of the user
on a software system being tested. A monitored user may be
a human (e.g., performing a certain test) and/or a system
module (e.g., a module initiating the running of a certain
procedure).

In one embodiment, a test scenario refers to a functional
and/or a technical specification for testing a business process
and/or one or more transactions. A test scenario may specify
how to test one or more business processes, business require-
ments, test conditions, logical data, and/or expected results of
tests.

In one embodiment, runs of test scenarios are identified
and/or obtained based on data collected from monitoring
users. For example, monitoring of a user may involve collec-
tion of data related to inputs provided by a user to a system,
along with the transactions that were run, and results of the
transactions. This data may be used to identify runs of test
scenarios that describe test steps taken by a user and a result
of executing the test steps on the software system.

In another embodiment, monitoring a user is done in order
to obtain activity data of a user on a software system. The
activity data may include data related to inputs provided by
the user and/or other sources to the software system, outputs
generated by the software system, and/or intermediate values
generated by the software system (e.g., temporary files gen-
erated by the system, network traffic of the system, and/or
content of memory belonging to the system). Optionally, the
activity data may be utilized in order to identify runs of test
scenarios.

In some embodiments, users perform at least part of their
interaction with a software system via a user interface that
includes a display that displays screens. Optionally, a screen
may refer to a presentation of a certain form through which a
user may access, modify and/or enter data. Optionally, a
screen includes one or more fields. Optionally, a field may
have a certain name and/or identifier. Optionally, a field may
have an associated value, which may be referred to herein as
a “field value”. The field value may or may not be presented
on the screen. Optionally, the user is able to edit certain field
values, while other field values may not be editable by the
user. Optionally, certain field values may be required values,
which the user must enter before completing a screen.
Optionally, field values from a screen may correspond to one
or more database entries. For example, a screen displaying
customer details (e.g., name, address, telephone number)
may correspond to a record of the customer in a customer
database.

US 9,311,224 B1

25

In one embodiment, monitoring users involves monitoring
certain transactions and/or business processes that were
executed by the users, as part of running test scenarios.
Optionally, monitoring users may involve monitoring which
programs executed by the users, along with invocation values
of the users and/or return values of the programs.

In one embodiment, monitoring a user may involve record-
ing and/or processing inputs the user provides to the software
system (e.g., via a keyboard, mouse click, visual cue). Addi-
tionally or alternatively, the inputs may include digital data
transmitted to the system (e.g., a file of digital data). In
another example, monitoring a user may involve recording
and/or processing outputs generated by the software system.
Such outputs may include, values presented on a screen,
written in a file, printed, and/or provided in the form of
auditory cues. The outputs may be presented to the user
and/or provided to other recipients. In yet another example,
monitoring a user may involve utilization of internal state data
of the software system; data that may not have been directly
provided by the user and may also not be directly provided to
the user (e.g., memory content, database activities, and/or
network traffic).

Insome embodiments, users performing tests may be given
instructions and/or scripts describing some of the steps
involved in a certain test (e.g., which procedures to run, what
buttons to push, and/or what values to provide the system).
Optionally, such instructions and/or scripts may be given in
electronic form (e.g., a computer file or instructions on a
screen) and may be recorded and/or processed as part of
monitoring a user.

As described in some embodiments in this disclosure,
monitoring a user running test scenarios on a software system
may be performed by a monitoring module. Optionally, the
monitoring module is, and/or utilizes, a software module that
interacts with the software system on which the test scenarios
are run, in order to obtain data related to activity of the user on
the software system. Optionally, the monitoring module is
implemented, at least in part, as part of the software system.
For example, the monitoring module may include one or
more programs that are part of a distribution of the software
system. Additionally or alternatively, the monitoring module
may be implemented, at least in part, separately from the
software system. For example, the monitoring module may
include programs that are not part of the software system
(e.g., not included in a distribution of the software system). In
another example, the monitoring module may include pro-
grams that run on hardware that does not run the programs
belonging to the software system; e.g., the monitoring mod-
ule may run programs on different servers than servers on
which the software system runs programs. Optionally, the
monitoring module is implemented, at least in part, on hard-
ware remote from hardware that runs the software system. For
example, a software system may run on hardware located at a
certain organization, while the monitoring module may run,
at least in part, on remote cloud-based servers that are not
associated with the certain organization.

In some embodiments, the monitoring module may receive
data from the software system that is intended for the moni-
toring module (e.g., the software system may explicitly send
the monitoring module data describing activity on the soft-
ware system). Additionally or alternatively, the monitoring
module may intercept and/or examine data of the software
system that is not intended primarily for the monitoring mod-
ule. For example, the monitoring module may sniff network
traffic that involves message exchange between modules of
the software system as part of the normal operation of the
software system.

10

20

25

30

35

40

45

50

55

60

26

In some embodiments, a run of a test scenario may include
identifiers of business processes, transactions, and/or system
commands that were executed while running the test sce-
nario. Additionally or alternatively, a run of a test scenario
may include values that were provided to a software system
(e.g., input values in a screen), values generated by the soft-
ware system (e.g., outputs from a transaction), and/or internal
values of the software system (e.g., intermediate values gen-
erated by a transaction). Additionally or alternatively, a run of
a test scenario may include state information about systems
involved in running the test scenario (e.g., the state of certain
system resources, and/or performance data such as CPU load
or network congestion), and/or information about a user run-
ning the test scenario (e.g., organization affiliation, depart-
ment, job title, permissions). Optionally, a certain test step,
transaction, command or procedure is said to be described
and/or included in a run of a test scenario if the run of the test
scenario indicates that the certain test step, transaction, com-
mand, or procedure was executed as part of running the test
scenario. Optionally, examining the run of the test scenario
may reveal a value associated with the certain test step, trans-
action, command, or procedure. Additionally, examining the
run of the test scenario may reveal a behavior of the system
with respect to the certain test step, transaction, command, or
procedure. For example, a run of a test scenario may indicate
whether or not a certain transaction, involved in the running of
the test scenario, produced an error message.

In one embodiment, identifying a run of a test scenario
from data obtained from monitoring one or more users is done
as part of the process of monitoring the users. For example, a
user may be monitored for a session, which is a certain period
of time that corresponds to running of a certain test scenario.
Each session may start when the running of the certain test
scenario starts (e.g., when a first screen is presented to a user),
and may end when the running ends (e.g., after the user enters
a last value involved in the test scenario). Thus, any data
recorded during the session may be easily identified as
belonging to a run of the certain test scenario.

In one embodiment, the action of monitoring a user and the
action of identifying a run of a test scenario from data
obtained from the monitoring are performed separately. For
example, monitoring may generate bulk data corresponding
to activity of one or more users. Identifying runs in the bulk
data may require parsing the data to identify certain portions
of interest, such as transactions executed by each of the users
and/or inputs and outputs of each of the users. In one example,
identifying runs involves detecting in the data obtained from
monitoring signals that denote a start and/or end of a run.
Optionally, the signals may be explicit, such as explicit tags in
the data that denote a start of running a test and/or end of
running a test scenario. Alternatively or additionally, the sig-
nals may be implicit. For example, a user entering data after
not doing so for a while may signal a start of a run; while
having a user stop entering data, and not entering further data
for a prolonged period may signal an end of a run. In another
example, the fact that a user performs a certain transaction
may signal a start of a run, such as entering data in a screen
labeled “begin new client record”. Similarly, certain transac-
tions may signal an end of a run, such as entering data in a
screen labeled “finalize new client”. In yet another example,
identifying a run of a test scenario may involve selecting
certain types of data and/or amounts of data that are to be
included in the run. For example, while monitoring a user
may involve collection of various types of data, in a certain
system, runs of test scenarios may include only descriptions
of screens presented to a user while interacting with the

US 9,311,224 B1

27

certain system. Thus, in this example, identifying runs may
involve identifying and retaining descriptions of screens.

The process of identifying runs of test scenarios ofa certain
user may utilize, in some embodiments, data collected from
other users. For example, determining boundaries of a test
scenario, such as determining at what screen a run of the test
scenario typically starts, and at what screen it ends, may be
based on examination of data obtained from multiple users. In
the examination of the data, certain common screens that
appear in data from multiple users may be detected, and runs
of'test scenarios may be restricted to begin and/or end with a
description of at least one of the common screens. Alterna-
tively or additionally, identifying runs of test scenario run by
a certain user, may involve examination of data obtained
primarily from monitoring the certain user.

As described in some embodiments in this disclosure, iden-
tifying runs oftest scenarios run by users on software systems
may be performed by a test identifier. In some embodiments,
the test identifier receives data from the monitoring module.
Optionally, the test identifier and monitoring module are real-
ized by the same software module and/or same hardware. In
one example, one program may perform at least some of the
operations involved in monitoring the users and identifying
the runs. In another example, programs that perform at least
some of the operations involved in monitoring the users and
identifying the runs of test scenarios, run on the same servers.

In one embodiment, the monitoring module runs, at leastin
part, on hardware that is different from hardware on which at
least some of the actions of the test identifier are performed.
For example, a monitoring module that monitors users
belonging to a certain organization may run, at least in part,
on servers belonging to the certain organization. However, a
test identifier, which receives data from the monitoring mod-
ule, may run on remote servers belonging to, or controlled by,
a different organization, such as an organization that provides
analysis services to the certain organization.

Crowd Testing Data

Some aspects of this disclosure involve utilization of runs
of'test scenarios run by users belonging to, or associated with,
different organizations. Optionally, a group of users running
test scenarios may be referred to as a “crowd” or “crowd
users”. Optionally, crowd users do not run test scenarios in a
coordinated effort, such as users belonging to different orga-
nizations that do cooperate to run test scenarios to test a
certain software system that belongs to a certain organization,
or users making a coordinated effort to test certain aspects of
their software systems. Rather, as typically used in this dis-
closure, the users belonging to the different organizations run
test scenarios to test software systems of their respective
organizations, and do so essentially independently of each
other.

In some embodiments, a first organization and second
organization are considered different organizations if the first
organization has a different ownership structure (e.g., a dif-
ferent composition of shareholders) than the second organi-
zation. Additionally or alternatively, two organizations may
be considered different organizations if they have different
employees, and/or different members of management.

In one embodiment, a user may be considered to belong to
an organization and/or may be considered to be associated
with the organization, if the user has a certain relationship
with the organization such as being an employee of the orga-
nization, a member of the organization, and/or contracted to
work for the organization. Additionally or alternatively, a user
may belong to an organization, and/or be associated with the
organization, if the worker performs work that is directly or
indirectly done on behalf of the organization. For example, an

10

15

20

25

30

35

40

45

50

55

60

65

28

employee of a first organization may be considered associated
with a second organization if the employee runs, as part ofher
duties, tests that involve a system of the second organization.
As used herein, the terms “associated” and “belongs” may be
used interchangeably when referring to a user being associ-
ated with an organization or a user belonging to an organiza-
tion.

Some aspects of this disclosure involve utilization of runs
of'test scenarios run on software systems belonging to difter-
ent organizations and/or associated with the different organi-
zation. Optionally, a software system may be considered to
belong to a certain organization and/or may be considered to
be associated with a certain organization if the software sys-
tem runs, at least in part, on hardware belonging to the orga-
nization and/or paid for by the organization (e.g., software
running on cloud-based servers billed to the organization).
Additionally or alternatively, a software system may be con-
sidered to belong to an organization and/or be associated with
the organization if a user from the organization runs test
scenarios, which run at least in part, on the software system.
As used herein, the terms “associated” and “belongs” may be
used interchangeably when referring to a software system
being associated with an organization or a software system
belonging to an organization.

Some embodiments in this disclosure involve monitoring
multiple users belonging to different organizations. In some
embodiments, each user belongs to a single organization. For
example, 100 different users may belong to 30 different orga-
nizations; some organizations may have a single user that
belongs to them, while other organizations have multiple
users that belong to them. In some embodiments, users may
belong to more than one organization. For example, 100
different users may belong to 150 different organizations; in
this example, some of the users belong to more than one
different organization.

In the embodiments, some of the systems on which test
scenarios are run may be data-oriented large-scale software
systems. Optionally, the software systems are packaged
applications having multiple modules. Optionally the soft-
ware systems may be considered similar to each other if the
software systems use in a similar manner one or more mod-
ules of the same type (possibly having different versions).
Additionally or alternatively, the software systems may be
considered similar if they contain one or more modules with
a similar function (e.g., modules that manage sales, stocking,
or human resources).

In some embodiments, analyzing runs of test scenarios
obtained from monitoring running of test scenarios by a
crowd of users, on software systems of multiple organiza-
tions, may help gain certain insights that may not be easily
attained from analysis obtained from runs associated with a
single organization. For example, runs of test scenarios
obtained from monitoring a crowd may help gain insight into
the general applicability of certain test scenarios and/or test
steps for testing certain components of the systems, such as
modules, business process, and/or transactions. Based on the
fact that multiple organizations run test scenarios to test cer-
tain components, it may be postulated that a different orga-
nization should also run similar test scenarios; this may be
especially true if the different organization is in the same field
of operations as the multiple organizations.

In some embodiments, analyzing runs of test scenarios
obtained from monitoring running of test scenarios on sys-
tems of multiple organizations may also help gain insight into
the commonality of certain aspects of the systems, as indi-
cated by their reoccurrence in the runs. Such insight may be
used, in some embodiments, to deduce whether a certain

US 9,311,224 B1

29

aspect is particular to a single organization, or a small number
of organizations from the multiple organizations. Alterna-
tively, it may be deduced, the certain aspect may be rather
general and may be associated with a relatively large portion
of the multiple organizations. For example, runs of test sce-
narios associated with multiple organizations may include a
field which is given a value in each run of the test scenarios.
If a certain value is entered in a large proportion of the runs
(the same certain value is entered in each run of the large
proportion or runs), then the value may be considered a
default value or a general value. In this case, knowing the
certain value may not assist much to identify a specific orga-
nization which is associated with a run from which the certain
value was taken. However, if a certain value appears only in
runs of a single organization, or in a small proportion of the
runs, then the value may be considered a unique and/or pro-
prietary value. In this case, knowing the certain value may
assist to identify a specific organization which is associated
with a run from which the certain value was taken. Thus, in
some embodiments, monitoring runs of test scenarios asso-
ciated with multiple organizations may help discover non
organization-specific default values that can be used for run-
ning test scenarios of other organizations. Additionally, the
same analysis may help identify what data in the runs may be
considered proprietary.

Routes and Divergent Routes

A route, as used in some embodiments described in this
disclosure, defines a sequence of one or more elements
involved in the running of a test scenario. Optionally, an
element may be a test step, a transaction, and/or a screen.
Optionally, a run of the test scenario, such as a run obtained
from monitoring a user running the test scenario, describes
the sequence of one or more elements involved in the running
of the test scenario. For example, the run of a test scenario
may describe the test steps performed while running the test
scenario, the transactions executed while running the test
scenario, and/or the screens presented to a user while the user
ran the test scenario.

In one embodiment, a test scenario template defines certain
elements that are to be executed when running an instantia-
tion of the template, and an order of execution of the elements
in the instantiation. The template may include logic that deter-
mines the order according to runtime parameters. Thus, a test
scenario template defines one or more routes (also referred to
as “the template route/s”) that may be associated with the
template. Execution of an instantiation of the template, i.e.,
running a test scenario based on the template, is expected to
follow the template route/s. For example, if a template
includes screens 1-4 (and in that order), an instantiation of the
template is expected to present screen 1, followed by screen 2,
screen 3 and then screen 4.

In some embodiments, by examining a run of the test
scenario it may be determined whether during the running of
the test scenario a certain route was followed or not. For
example, if a sequence of one or more elements described in
the run corresponds to the sequence of the route, then it may
be assumed that the run follows the route. Conversely, if the
sequence of one or more elements described in the run
diverges from the sequence of the route, then it may be
assumed that the run diverges from the route.

In one embodiment, a test scenario template may have
more than one route that may be treated as a template route.
Optionally, the template may include alternative test steps
that may depend on a choice made by a user. For example,
when a user attempts to update a record, according to the
template, certain test steps are conducted if the update is
successful, while other steps are to be conducted if the update

10

15

20

25

30

35

40

45

50

55

60

65

30

attempt returns an error. In another example, a screen belong-
ing to the template provides the user with an option, such as
setting the price of a part. Based on the price range, certain
actions may be required: with a price of below $1000 the user
may continue as usual, however, a price of $1000 or more
requires the user to fill out a screen that generates arequest for
manager approval. Thus, when examining routes a template
test scenario may define, it is possible for there to be more
than one template route.

There may be various relationships between routes (e.g.,
different routes identified in multiple runs of test scenarios).
For example, routes may be distinct of each other (e.g., they
do not contain any essentially similar elements). In another
example, a first route may be contained or partially contained
in a second route (e.g., there are one or more elements that are
essentially the same in both of the first and the second routes).
In the latter case, the first and/or the second routes may be
considered divergent routes, and/or one of the two routes may
be considered to diverge from the other. In particular, herein
we may consider a route that diverges from a template route.
Optionally, in cases where a certain test scenario template
may have a multiple template routes, a route may be consid-
ered a divergent route if it diverges from all of the multiple
template routes.

A divergent route does not completely follow a route to
which it is compared, such as a template route. By “not
completely follows™ it is meant that there is a substantial
difference between the divergent route and the route to which
it is being compared, such as an element not shared by both
routes. In one embodiment, a divergent route is characterized
by a different sequence of elements compared to a sequence
of elements defined by the template route, and/or different
configurations of the transactions used by the process under
test. For example, the sequence of the divergent route may
include a transaction not included in the sequence of the
template route. In another example, the sequence of the diver-
gent route may be missing a transaction that is in the sequence
of'the template route. In yet another example, the sequence of
the divergent route includes at least one transaction that is
executed out of order, with respect to an order of executing
transactions that is defined by the template route.

In some embodiments, for a first route to be considered a
divergent route with respect to a second route, the first and
second routes must have a certain degree of similarity.
Optionally, the first and second routes need to be considered
similar to each other. Additionally, the first and second route
may need to be considered essentially the same. Additional
information regarding how to interpret routes that are similar
and/or essentially the same is given below.

Routes followed by runs of test scenarios may diverge from
their respective template routes for various reasons.

Inone example, different organizations may configure and/
or use their systems in different ways. The different configu-
rations and/or ways of using the systems may change the
behavior of the transactions, and as a result, may change the
test scenarios that correspond to the transactions that behave
differently. Optionally, the different configurations may lead
to a different choice of transactions that are to be executed in
a test scenario, and/or a different order of execution of the
transactions. In one example, a different choice of transac-
tions and/or order of execution may represent an alternative
way to perform a certain task. Though a task is typically
performed in a first organization in a first method, which
corresponds to a first route, it may be performed in another
way, such as the way it is performed by a second organiza-
tions, represented by a second route. Thus, the second route,
which may be considered a divergent route with respect to the

US 9,311,224 B1

31

first, may be a legitimate method for performing the task, and
follow a route that a user of the first organization may actually
end up following (e.g., through inadvertent configuration
change or serendipitous discovery of the user). Thus, it may
be advantageous for the first organization to also test the
second route.

In one example, a manual test scenario is interpreted by a
user and executed by a processor. The manual test scenario
may be based on a certain template (e.g., a script given to the
user), and as such, executing the script should lead to a run of
the test scenario that follows the template route. However, as
the user runs the test scenario, the user may perform certain
actions that do not follow the script; for example, the user may
determine that certain test steps in the script are incorrect or
irrelevant and thus should not be performed. Thus, decisions,
reactions, and/or adaptations made by a user running a
manual test scenario can lead to divergent routes.

In another example, a test scenario may be an automatic
test scenario that is interpreted and executed by a processor.
The automatic test scenario may have a certain template (e.g.,
commands that execute a sequence of test steps), and as such,
executing the automatic test scenario should lead to a run of
the test scenario that follows the template route. However,
there may be cases in which the automatic test scenario uti-
lizes randomly generated or randomly selected values. For
example, to automatically fill certain fields, the automatic test
randomly generates values, or selects certain random records
from a database. Such an element of randomness which may
introduce unexpected values into a run of the automatic test
scenario may lead to unexpected behavior of the system (e.g.,
generation of certain errors or execution of different transac-
tions than were expected). Thus, a run of an automatic test
scenario may end up following a divergent route that diverges
from its template route.

In yet another example, a semiautomatic test scenario,
which is a combination of the aforementioned manual test
scenario and automatic test scenario, is run by a user. The
semiautomatic test scenario may end up not following its
template route due various reasons, as described above. For
example, actions of the user (e.g., values entered by the user)
may lead to unexpected behavior of the system. Similarly,
values randomly generated or automatically selected by the
system may also lead to unexpected behavior while running
the semiautomatic test scenario. Thus, a run of a semiauto-
matic may end up diverging from its intended template route.

A divergent route that diverges from a template route may
do so in various ways. A route analyzer may be configured to
identify various types of divergent routes, which diverge in
different ways from the template route.

In one embodiment, a route analyzer is configured to iden-
tify divergent routes that diverge from the template route and
later on converge back to the template route. FIG. 10A illus-
trates a template route 790 that includes a sequence of seven
screens (SCR1 to SCR7) that are to be executed in that order.
In one example, as illustrated in FIG. 10B, a divergent route
791 includes screens 1,2, and then two screens not included in
the template route, screens 9 and 10, and then includes
screens 4,5,6, and 7 from the template route. Note that screen
3 from the template route is not part of the divergent route, but
that need not be the case in all examples. In other examples, a
divergent route that diverges from the template route and later
on converges back to the template route may include all the
elements of the template route and in addition some elements
that are not part of the template route.

In another embodiment, a route analyzer is configured to
identify divergent routes that diverge from the template route
and do not converge back to the template route. In one

10

15

20

25

30

35

40

45

50

55

60

65

32

example, as illustrated in FIG. 10C, a divergent route 792 that
diverges from the template route 790 does not include screens
5,6, and 7 from the template route 790. Additionally, the
divergent route 792 includes screens 9 and 11, which are not
part of the template route 790. Note that even though screens
5,6, and 7 from the template route are not part of the divergent
route, which need not be the case in all examples. In other
examples, a divergent route that diverges from the template
route and does not converge back to the template route may
include all the elements of the template route and in addition
some elements that are not part of the template route that are
to be executed after the elements of the template route.

In yet another embodiment, a route analyzer is configured
to identify divergent routes that merge with the template
route. A divergent route 793 illustrated in FIG. 10D includes
screens 8,9, and 12, which are not part of the template route
790, and then four screens that are part of the template route
790 (screens 4,5,6, and 7). Note that screens 1,2, and 3 from
the template route 790 are not part of the divergent route 793,
but that need not be the case in all examples. In other
examples, a divergent route that merges with the template
route may include all the elements of the template route and in
addition some elements that are not part of the template route
that are to be executed before the elements of the template
route and/or after it.

In one embodiment, a route from identified in a run of a test
scenarios (i.e., the run follows the route), may be stored in a
database. Optionally, the route may be a divergent route with
respect to a certain template route corresponding to a certain
test scenario template. Optionally, storing the route involves
recording the run and/or information extracted from the run in
the database. Additionally or alternatively, storing the route
may involve recording elements of the route (e.g., test steps,
transactions, and/or screens) in the database. Additionally or
alternatively, storing the route may involve storing a value
computed from the run and/or the route, such as a hash value
computed from screen identification numbers and/or transac-
tion identification numbers. Optionally, storing a divergent
route that diverges from a template route may involve storing
information related to the template route and/or a test sce-
nario template which defines the template route. Optionally,
storing a divergent route that diverges from a template route
may involve storing information regarding one or more dif-
ferences between the route and the template route.

In one embodiment, storing a route may involve taking
note of information pertaining to a certain user that ran a run
which follows the route, and/or a certain organization asso-
ciated with the run. In one example, storing a route involves
adding the certain user and/or the certain organization to a list
corresponding to the route. In another example, storing a
route involves incrementing a counter corresponding to a
number of users and/or incrementing a counter that corre-
sponds to a number of organizations. Optionally, maintaining
the aforementioned lists and/or counters may enable determi-
nation of popularity of certain routes with users and/or orga-
nizations in general, and/or popularity of certain routes with
specific users and/or specific organizations.

In one embodiment, a route stored in a database may be
processed. For example, the route may be processed before
being received by the database, processed by the database
(e.g., before storage and/or after retrieval), and/or processed
after being delivered from the database.

In one example, processing a route may involve selecting
certain types of elements to be included in the route. For
example, processing a route may involve retaining transac-
tions included in the route, while other types of elements such
as descriptions of screens are not stored.

US 9,311,224 B1

33

In another example, processing a route may involve alter-
ing values included in elements belonging to the route. For
example, data such as numbers or addresses may be converted
to a certain format. Additionally or alternatively, values may
undergo filtering, noise removal, and/or stemming of text.
Altering values included in elements may assist in standard-
izing stored routes and make it easier to retrieve and/or com-
pare routes.

In yet another example, processing a route may involve
filtering elements according to their popularity. For example,
certain elements that are not utilized in a sufficient number of
routes, by a sufficient number of users, and/or be associated
with a sufficient number of organizations may be excluded
from a stored route. Low utilization may indicate that the
excluded elements are not likely to be useful for other orga-
nizations.

In still another example, processing a route may involve
removing elements that are considered proprietary and/or
removing values that may be considered proprietary. For
example, if screens included in a route include proprietary
field values, those values may be removed or replaced with
default values.

In some embodiments, similarity between two routes may
be characterized in different ways. For example, the two
routes may be characterized as being “similar to each other”
and/or “essentially the same”. Both terms indicate that the
two routes have a degree of similarity between them (e.g.,
they have certain elements in common); however, as used
herein, the term “essentially the same” typically indicates a
higher level of similarity between two routes compared to
similarity indicated by the term “similar to each other”. Usu-
ally, as used herein, any two routes that are referred to as being
essentially the same may also be considered similar to each
other, but the converse is not necessarily true.

In one embodiment, two routes are essentially the same if
they contain the same exact elements. For example, the two
routes involve the same screens (e.g., as determined by the
fields in the screens and/or screen identification codes). In
another example, two routes that are essentially the same
involve execution of the same transactions (e.g., as deter-
mined from commands involved in the transactions and/or
transaction identifiers). Optionally, the two routes that are
essentially the same may have different values associated
with one or more elements that are the same in both routes.
For example, two routes may be considered essentially the
same if they contain the same screens (e.g., the screens may
have the same identification numbers); however, different
customizations done to elements of each route may cause
certain field names and/or default values for fields to be
slightly different in the screens corresponding to the two
routes.

In another embodiment, two routes may be considered
similar to each other and/or essentially the same if they
involve similar elements. For example, the two routes involve
the similar screens (e.g., as determined by similar composi-
tion of fields in the two screens and/or similar values utilized
by the two screens identification codes). In another example,
the two routes may involve execution of the similar transac-
tions (e.g., as determined from similarity in commands
involved in the transactions and/or similar transaction iden-
tifiers).

Similarity between routes may depend on the number and/
or proportion of same or similar elements shared by the
routes. In one example, if two routes contain at least a first
number of same elements, they may be considered similar to
each other; and if the two routes contain at least a second
number of same elements, they may be considered essentially

10

15

20

25

30

35

40

45

50

55

60

65

34

the same. In this example, the second number may be higher
than the first number. For example, two routes may be con-
sidered similar if they both involve executing 3 identical
transactions, and they may be considered essentially the same
if they both involve executing 7 identical transactions. In
another example, if two routes have at least a first proportion
of similar elements, they may be considered similar to each
other; and if the two routes contain at least a second propor-
tion of similar elements, they may be considered essentially
the same. In this example, the second proportion may be
higher than the first proportion. For example, two routes may
be considered similar to each other if at least 50% of the
screens in a first rout of the two routes are similar to the
screens in the second route of the two; furthermore, if at least
80% of the screens in the first route are similar to the screens
in the second route, the two routes may be considered essen-
tially the same.

In yet another embodiment, similarity between two routes
is determined according to a distance metric that indicates
that the distance (difference) between them. Optionally, if a
distance between the two routes is below a first threshold, the
two routes are considered similar to each other; and if the
distance below them is below a second threshold, they are
considered essentially the same. Optionally the second
threshold is lower than the first. A distance metric may also
express a level of similarity between routes. In such a case, if
similarity between two routes exceeds a first threshold, the
two routes may be considered similar to each other, and if the
similarity exceeds a second threshold, possibly higher than
the first, the two routes may be considered essentially the
same.

In one example, routes are represented as a sequence of
transaction identifiers. A distance metric between two routes
may be a standard sequence similarity metric, such as edit
distance or Manhattan distance. In this example, two routes
may be considered essentially the same if the edit distance
and/or the Manhattan distance is below a predetermined
threshold; for instance, the predetermined threshold may be
20% of the length of the longest sequence corresponding to
one of the routes.

In another example, routes may be converted to a vector
representation. For example, each element may correspond to
one or more dimensions in a vector space. Optionally, certain
vector dimensions may correspond to the presence of certain
elements (e.g., a value of 1 is given if the element is present in
a route and O otherwise). Optionally, certain vector dimen-
sions may correspond to values associated with elements in
the routes. Those skilled in the art may recognize that there
are various ways in which a route may be represented as a
vector. The choice of representation may depend on various
factors, such as the length of the desired vectors and/or the
type of data included in routes. In one example, two routes
may be considered essentially the same if a distance between
vectors representing the two routes is below a predetermined
threshold. The cosine of the angle between two vectors may
be used to measure the distance (or similarity) between the
vectors. For example, if the angle between the two vectors, as
determined from the cosine, is smaller than a predetermined
threshold, the two routes corresponding to the vectors may be
considered essentially the same. Optionally, if the angle is
below a second, slightly higher predetermined threshold, the
two routes may be considered similar to each other.

Configuration Elements and Changes

In one embodiment, the software systems may include
many modules that can be configured to suit an organization’s
needs. Configuring a system may involve various aspects of a
software system, modules belonging to the software system,

US 9,311,224 B1

35

and/or business processes run on the software system.
Optionally, in some embodiments, configuring a system is
done, at least in part, using configuration files, setup file,
and/or customization code that are read by the system and
may be altered by an organization to suit the organization’s
needs. In one example, configuring a SAP ERP system
involves entering, editing, and/or removing values from con-
figuration tables. Optionally, the tables may define various
aspects of fields (e.g., name and type) for certain data tables
users may access via the ERP system. In another example, an
Oracle™ database system is configured using Oracle form
personalization, which is a standard feature provided by
Oracle™ and supported by Oracle™ to customize the forms.
Forms personalization enables changing properties of fields,
such as hiding fields, making fields mandatory, creating zoom
functionality, and/or dynamic changes of lists of values. In
one embodiment, customizations refer to user-generated
code, such as “user exit” in SAP, and customization code in
Oracle.

In some embodiments, a configuration element is one or
more details (e.g., a line in a configuration file, a field name,
a function name), which can be used to configure behavior of
a software system. In one example, a configuration element
may define certain aspects of data structures used by the
system (e.g., column names in a table) and/or type of values in
a column belonging to a table. In another example, a configu-
ration element may determine behavior of a system, such as
defining what functions should be called under certain con-
ditions (e.g., what to do with a printing job).

In one embodiment, a change to a configuration element
may be referred to as a “configuration change”. Optionally, a
configuration change may include one or more actions that
involve adding a configuration element, deleting a configu-
ration element, and/or editing a configuration element.
Optionally, a configuration change may require running one
or more test scenarios in order to verity that the configuration
change caused a desired effect and/or in order to verify that
the configuration change did not cause an undesired effect.

In one embodiment, a configuration element may have an
associated value. For example, a configuration element called
“default field width” may have an associated value 20.
Optionally, a change to an associated value of a configuration
element may be referred to as a “configuration change”.
Optionally, a configuration change may involve adding an
associated value to a configuration element, deleting an asso-
ciated value from a configuration element, and/or editing an
associated value of a configuration element.

In some embodiments, there may be various ways in which
configuration elements and/or configuration changes may be
identified. Identifying a configuration element enables a soft-
ware system and/or a user to determine what configuration
element is being referred to. Similarly, identifying a configu-
ration change enables the software system and/or a user to
determine what configuration element being changed and/or
what change is done to an associated value of the configura-
tion element.

In one example, a configuration change is identified by a
code, such as a hash code or an identification number. Option-
ally, the code also identifies an associated value of the con-
figuration element and/or a change to an associated value of
the configuration element. In another example, a configura-
tion change and/or a configuration element may be charac-
terized by a new configuration file (e.g., a new setup file for
the system). Optionally, a comparison between a new con-
figuration file and a previous configuration file may charac-

20

25

30

40

45

55

36

terize configuration changes, that involve changes to configu-
ration elements and/or associated values of configuration
elements.

In one embodiment, configuration elements and/or con-
figuration changes may be clustered into clusters of similar
configuration elements and/or configuration changes.
Optionally, clusters of similar configuration elements include
configuration elements that deal with the same, or similar,
system modules, business processes and/or database tables.
Optionally, clusters of similar configuration changes include
configuration changes that deal with the same, or similar,
configuration elements. Optionally, clusters of similar con-
figuration changes include configuration changes that are
associated with similar values.

In one embodiment, configuration elements and/or con-
figuration changes are clustered utilizing text clustering
approaches. For example, clustering is performed on configu-
ration files that include the configuration elements and/or
configuration changes. Those skilled in the art may identify
various text clustering algorithms that may be utilized to
cluster configuration elements into clusters of similar con-
figuration elements. Optionally, configuration elements and/
or configuration changes may be considered similar if con-
figuration files that include the configuration elements and/or
the configuration changes are considered similar (e.g., they
belong to a same cluster).

In another embodiment, clustering configuration elements
and/or configuration changes may be done based on values
associated with the configuration elements. Optionally, clus-
ters of similar configuration elements and/or configuration
changes may include same or similar configuration elements
and/or configuration changes, which have similar associated
values in several ways. In one example, portions of configu-
ration files that include multiple configuration elements and/
or configuration changes are converted to vector representa-
tion; each vector dimension corresponds to a certain
configuration element and the value entered in the vector
dimension corresponds to an associated value of the certain
configuration element. Those skilled in the art may recognize
various algorithmic approaches that may be utilized to cluster
vectors representing the portions of the configuration files
(e.g., k-means or hierarchical clustering).

Clustering Runs of Test Scenarios

In some embodiments, runs of test scenarios may be clus-
tered. Clustering the runs may involve assigning a run of a test
scenario to at most one cluster (e.g., “hard clustering” or
partitioning). Alternatively, the clustering may involve
assigning a run of a test scenario to one or more clusters. For
example, the clustering may be “soft clustering” in which a
run of a test scenario may belong to various clusters, possibly
with different probabilities or levels of association to each
cluster. Optionally, clusters of runs contain runs that are simi-
lar to each other.

In one embodiment, runs of test scenarios may be parti-
tioned into clusters based on one or more values from the runs
of'test scenarios. For example, runs that involve a same start
and/or end test step may be placed in the same cluster (e.g.,
runs that start from the same screen ID and end with an error
are placed in the same cluster). In another example, runs that
have a certain field (e.g., customer bank account number) are
placed in the same cluster.

Clusters of runs of test scenarios may have different char-
acteristics in different embodiments. In one embodiment, a
cluster of runs of test scenarios should be of a size that reaches
a predetermined threshold. Optionally, the predetermined
threshold is greater than one. For example, each cluster
should contain at least 3 runs. Optionally, the predetermined

US 9,311,224 B1

37

threshold is proportional to the number of runs being clus-
tered. For example, each cluster may be required to contain at
least 0.1% of the runs of test scenarios being clustered.

Clusters of runs may also be constrained according to the
source of the runs belonging to the clusters. In one embodi-
ment, a cluster of runs of test scenarios must include runs of
at least a first predetermined number of different users and/or
of'users belonging to at least a second predetermined number
of organizations. Optionally, the first predetermined number
is greater than one and/or the second predetermined number
is greater than one. In one example, the first predetermined
number is 10, and the second predetermined number is 2;
thus, each cluster includes at least 10 runs, and not all those
runs are associated with the same organization. In another
example, the first predetermined number is 5, and the second
predetermined number is 5; thus, each cluster needs to con-
tain runs associated with at least 5 organizations.

In one embodiment, ensuring that clusters of runs have
certain characteristics, such as a certain size and/or include
runs of a certain source, is done by a clustering algorithm that
generates the clusters. For example, the clustering algorithm
may ensure that each cluster includes runs of test scenarios of
at least a predetermined number of users. Alternatively or
additionally, ensuring that clusters of runs have certain char-
acteristics may be done after clustering. For example, after
clusters are generated, they may be filtered to remove clusters
that have a size that is smaller than a predetermined threshold.

In one embodiment, clustering of runs of test scenarios
may involve procedures that rely on some runs being similar
based on a criterion of similarity. Optionally, a cluster of runs
may include similar runs. Optionally, by similar runs it is
meant that two runs are similar to each other according to the
criterion. Optionally, by similar runs it is meant that at least a
certain percentage of the runs belonging to a cluster are simi-
lar to each other according to the criterion. For example, a
cluster may be considered to include similar runs if 90% of
the pairs of runs in the cluster are similar according to the
criterion. Optionally, by similar runs it is meant that runs
belonging to the cluster are all similar to a representative of
the cluster, such as one of the runs belonging to the cluster or
an average run of the cluster (e.g., a centroid of the cluster).

The criterion according to which similarity between runs
may be established, may have several forms. For example, the
criterion for similarity between runs may be that similar runs
include at least one of: essentially the same fields, similar
combinations of fields, similar execution of transactions,
similar user interactions, similar requests, similar test steps,
and/or similar calls to procedures. Optionally, similarity
between runs of test scenarios may be determined based on
properties of their respective test scenarios of which the runs
are instantiations; for example, by comparing the test steps
used in each test scenario.

In one example, various runs of essentially the same test
scenario (e.g., essentially the same testing script) are consid-
ered similar. In another example, runs of different test sce-
narios (e.g., using slightly different testing scripts), may be
considered similar if certain similarity criteria are met (e.g.,
similar fields types or names, similar field values, similar
screen content and/or layout, and/or similar return values in
the runs). In yet another example, runs of test scenarios are
considered similar, if'the test scenarios from which they were
instantiated are similar (e.g., involve similar screens, similar
fields, and/or similar field values).

In one example, at least part of the runs of test scenarios
involve software that runs on remote servers such as cloud-
based servers. Monitoring a user running a test scenario may
involve monitoring the content of the network traffic, such as

35

40

45

38

information exchanged between an input and/or output
device of the user and a cloud-based server. In this example,
runs of test scenarios may be considered similar if the net-
work traffic associated with them is similar (e.g., it follows a
similar exchange sequence, and/or content of the network
traffic is similar).

In one embodiment, clustering runs of test scenarios to
clusters that include similar runs may be based on counting
the number of similar fields used in corresponding screens
that are included in the test scenarios; the larger the number of
similar fields in the test scenarios, the more similar the runs of
the test scenarios are considered to be. Optionally, fields may
be considered similar if they include the same type of data.
Additionally or alternatively, fields that have the same values
are considered similar to each other. In one example, fields
that include both the same type of data and the same values are
considered more similar to each other than fields that have the
same type of data (but different values).

In one embodiment, a type of data of a field is determined
according to the context of the field in the screen. For
example, if a field is preceded on a screen by the words
“amount” or “sum due”, the field is considered to be numeri-
cal; while if the field is preceded on a screen by the words
“address” or “ship t0”, it is considered to be a string. Addi-
tionally or alternatively, the type of data of a field may be
determined according to the features of the data structure
representing the data. For example, if the field stores datain a
variable that holds integers or floating-point values, the type
of data is considered to be numerical. However, if the field
stores data in an array, or vector of characters, the data type is
considered to be a string. Additionally or alternatively, the
type of data of a field may be determined according to meta
data associated with a screen or database associated with the
field. For example, a description of a column, in a database
table which is to receive data from a field may be indicative of
the type of data. In another example, meta data tags (e.g.,
XML tags) associated with a screen may indicate the type of
data.

In another embodiment, clustering of runs of test scenarios
to clusters that include similar runs of test scenarios may be
based on similarity between orders of displaying similar
fields in corresponding screens. The closer the order of pre-
sentation of similar fields in test scenarios, the more similar
runs of the test scenarios are considered to be. In one example,
test scenarios are represented, at least in part, as a sequence of
field types, and/or fields IDs. The similarity between two runs
of test scenarios may be determined to be inversely propor-
tional to the number of editing steps that need to be taken to
transform one sequence of identifiers to another (“edit dis-
tance”); the lower the edit distance between representations
of'two runs, the more similar they are considered to be (and so
are their corresponding runs).

In yet another embodiment, clustering of runs of test sce-
narios to clusters that include similar runs may be based, at
least is part, on similarity between executed procedures that
are described in the runs. For example, the larger the overlap
in the corresponding sets of procedures performed by each
test scenario, the more similar runs of the test scenarios are
considered to be. Optionally, the clustering may be further
based on the order of the execution of the procedures; the
closer the order of execution of procedures in different test
scenarios, the more similar runs of the test scenarios are
considered to be. In cases in which test scenarios involve
execution of essentially the same procedures in essentially the
same order, the similarity between runs of the test scenarios
may be considered to be high.

US 9,311,224 B1

39

In still another embodiment, the clustering of runs of test
scenarios to clusters that include similar runs of test scenarios
may be based on transactions described as executed in the
runs of the test scenarios. For example, test scenarios may be
characterized by the individual commands run by the system
as part of the test scenario. Runs of test scenarios in which
similar commands are executed may be considered similar for
the purpose of clustering. Optionally, a cluster of runs that
contains runs that have a certain proportion of common trans-
actions executed in all runs in the cluster is considered a
cluster of similar runs. For example, if at least 50% of the
transactions involved in each run in a cluster appear in all
other runs in the cluster, the cluster is considered to be a
cluster of similar runs.

Logged activities related to running test scenarios may also
be utilized for the purpose of clustering and/or determining
similarity between runs of test scenarios. For example, clus-
tering of runs of test scenarios to clusters that include similar
runs may be based on one or more of the following logged
activities: a list of users who ran the test scenarios, an analysis
of'access to a database, messages returned from the executed
transactions (e.g., valid, warning, or error messages), fields
which returned values in the transactions, and/or procedures
utilized by the test scenario (e.g., as identified by logs of run
time analysis). The clustering may be done according to there
being similarity, involving one or more of the aforementioned
logged activities, between test scenarios whose runs are
assigned to the same cluster. Optionally, logged activities
may be represented as feature values that may be put in a
vector corresponding to a run. For example, if a certain activ-
ity is performed during a run, a vector corresponding to the
run has 1 in a certain position, and otherwise there is a O in the
certain position.

Similarity of runs of test scenarios may be determined, in
some embodiments, according to the test scenarios and/or
templates from which the runs were instantiated. Optionally,
similarity of the test scenarios and/or templates may define
similarity of the runs that were instantiated from the test
scenarios and/or templates; thus, runs that were instantiated
from similar test scenarios and/or templates are placed in the
same clusters (e.g., by the clustering module performing the
clustering of the runs). Alternatively, similarity of the test
scenarios and/or templates may be used as features that assist
in determining similarity of runs.

In one embodiment, runs that were instantiated from the
same test scenarios and/or the same templates may be con-
sidered similar. Optionally, two test scenarios and/or two
templates are considered the same ifthey involve execution of
the same test steps, screens, and/or transactions. In one
embodiment, two test steps are considered the same if they
perform the same exact task and include the same exact
associated data, while in another embodiment the two test
steps are considered the same if they perform the same task
but possibly involving different associated data. For example,
a first test step that involves entering a new product that is a
screwdriver (with details relevant to a screwdriver) may be
considered in the latter embodiment as being the same as a
second test step that involves entering a new product that is a
hammer (with details relevant to a hammer); however,
according to the former embodiment, the first and second test
steps may not be the same. Similarly, screens that include
field names and field values may be considered the same in
one embodiment if the field names and the field values are the
same; in another embodiment, the screens may be considered
the same if the field names are the same. The same logic may
also be applied to transactions; in some examples transactions
may be considered the same if they are completely identical,

20

35

40

45

40

while other transactions may be considered similar if they
include some of the same and/or similar elements (e.g., the
transactions involve similar screens).

In another embodiment, similarity of test scenarios and/or
templates is determined by comparing and/or counting simi-
lar elements in the test scenarios and/or templates. If the
number and/or proportion of the similar elements reaches a
predetermined threshold, then runs instantiated from the test
scenarios and/or templates may be considered similar and
placed by clustering in the same cluster of runs. For example,
if more than 50% of the screens included in two templates are
similar, then runs instantiated from the two templates may be
placed by clustering in the same cluster.

Inyet another embodiment, test scenarios and/or templates
from which runs were instantiated may be utilized to generate
feature values, which are used to determine similarity of the
runs to each other. For example, a vector of features repre-
senting a run may include values extracted from a template
and/or test scenario from which the run was instantiated.

Clustering of runs of test scenarios to clusters of similar
runs may be based on data associated with the runs. Such data
may include data describing conditions under which a run
was executed. For example, the data may describe aspects of
the system (e.g., data involving modules, hardware, and/or
software versions). In another example, such data may pertain
to a test runner, such as the role (or assumed role) of the tester
in an organization, level of skill of the tester, and/or permis-
sions granted to the tester.

In some embodiments, clustering of runs of test scenarios
to clusters of similar runs is done, at least in part, according to
descriptions related to the systems on which the test scenarios
were run. For example, such descriptions may include con-
figuration elements (e.g., configuration files, customization
code and/or setup files). Additionally or alternatively, the
descriptions may include configuration changes (e.g., addi-
tion, deletion, and/or modifications) to the configuration ele-
ments. Thus, for example, runs of test scenarios concerning
modules with similar configuration files (e.g., the customiza-
tion files indicate similar default procedures and/or database
accesses) may be placed in the same cluster. In another
example, runs of test scenarios executed as a response to
similar configuration changes (e.g., as determined by the
original and/or changed values involved in the configuration
changes), may be placed in the same cluster based on their
similar configuration changes.

In some embodiments, runs of test scenarios may be rep-
resented as vectors of features that may be converted to
numerical values. For example, certain dimensions in the
feature vectors may correspond to the presence or absence of
certain fields, procedures, test steps, and/or transactions in a
test scenario (e.g., a value of ‘1 is given to a feature if a field
has a certain value in the test scenario, and ‘0’ otherwise.
Alternatively, a value of ‘1’ is given to a certain feature if a
certain procedure is called in the test scenario, and ‘0’ other-
wise). In another example, certain dimension in the feature
vectors contain values of a certain field from a run (e.g., time,
data, or price), or are derived from processing one or more
field values (e.g., averaging the delivery time from multiple
entries of individual delivery times entered in a screen). In yet
another example, certain values in a feature vector are
assigned numerical values according to categories to which
values from the runs belong. For example, a sale may be
categorized as “domestic” or “foreign”, and accordingly be
given a value of “1” or “2” in the feature vector.

Feature vector representations may be utilized in order to
compute a degree of similarity between feature vectors of
runs of test scenarios. For example, in cases where the feature

US 9,311,224 B1

41

vectors contain numerical values (or can be converted to
numerical values), the distance similarity between vectors
representing test scenarios may be computed using one or
more of the following established distance metrics: Euclidean
distance of various norms, vector dot product, cosine of angle
between vectors, Manhattan distance, Mahalanobis distance,
Pearson correlation, and Kullback-Leibler divergence.

In one embodiment, a cluster of similar runs includes runs
that are represented by similar vectors. Optionally, similar
vectors may be characterized in various ways. In one
example, similar vectors are vectors whose average pairwise
similarity is above a predetermined threshold (e.g., the
threshold may be 0.5). Optionally, the average pairwise simi-
larity is determined by computing the average of the dot
product of each pair of vectors. In another example, similar
vectors are vectors that are all similar to a certain representa-
tive vector; e.g., the vectors all within a sphere of a certain
Euclidean distance from the representative.

Those skilled in the art may recognize that various cluster-
ing algorithms and/or approaches may be used to cluster runs
of test scenarios into clusters that include similar runs of test
scenarios. For example, the clustering may be done using
hierarchical clustering approaches (e.g., bottom-up or top-
down approaches) or using partition-based approached (e.g.,
k-mean algorithms). In addition, some of the test scenarios
may have assigned clusters while others may not. In such a
case, a semi-supervised clustering approach may be used
such as an Expectation-Maximization (EM) algorithm.

In one embodiment, the clustering of the runs of test sce-
narios to clusters that include similar runs may be done uti-
lizing a classifier that is trained to assign test scenarios to
predetermined classes. Optionally, the classifier is trained on
labeled training data that includes training data that includes
representations of runs of test scenarios (e.g., feature vectors)
and labels corresponding to clusters to which the runs are
assigned. Ifthe labels in the training data are assigned accord-
ing to some (possibly arbitrary) notion of similarity between
test scenarios, clusters of test scenarios that have the same
label assigned by the classifier are likely to contain runs that
are similar according to the notion of similarity.

Optionally, runs of test scenarios are labeled according to
the module they involve (e.g., “sales”, “human resources”,
“manufacturing”), the type of activities involved in the sce-
nario (e.g., “accessing database”, “data entering”, “report
generating”), fields in the test scenario (e.g., “customer 1D”,
“part number”), properties of the test scenario (e.g., “fast”,
“many steps”, “expensive”, “includes private data”), and/or
results of a run of the test scenario (e.g., “ok”, “error”, “access
denied—permissions™). Optionally, labels may be con-
structed from multiple attributes. For example, a run of a test
scenario may be labeled as “involve sales, no private data,
access corporate database”.

Optionally, labels assigned to runs of test scenarios may be
generated and/or assigned manually (e.g., by a tester running
a test), and/or automatically, e.g., by a procedure that ana-
lyzes a test scenario to detect attributes describing it (e.g.,
what modules and/or procedures it involves).

Those skilled in the art may recognize that there are many
algorithms, and/or machine learning-based approaches, that
may be used to train a classifier of runs of test scenarios using
labeled training data. For example, some examples of the
algorithms that may be used include logistic regression, deci-
sion trees, support vector machines, and neural network clas-
sifiers.

In some embodiments, clusters of runs of test scenarios
may be assigned a cohesion rank that describes how close to
each other are runs belonging to the cluster. A cohesion rank

10

15

20

25

30

35

40

45

50

55

60

65

42

of'a cluster may describe various aspects related to the close-
ness of runs of test scenarios belonging to a cluster. In one
example, similarity of runs of test scenarios is related to the
fields included in the screens of the test scenarios; some of'the
fields may be common to the screens involved in runs belong-
ing to the cluster, and some may not. The cohesion rank may
be proportional to the number of fields that are common in the
runs belonging to the cluster (e.g., they belong to at least 50%
of'the runs in the cluster). The cohesion rank can be between
two runs of test scenarios or between groups of runs of test
scenarios. Optionally, the cohesion rank may be expressed via
cluster metrics such as average distance from the cluster
centroid or the ratio between the average radius of a cluster
(intra-cluster distance) and the average distance between
clusters (inter-cluster distance).

Clusters generated in the embodiments (e.g., clusters of
runs of similar test scenarios) may be filtered in various ways.
Optionally, the filtering may be done in order to reduce the
number of clusters that need to be considered and/or retain
clusters with a certain desirable property. Optionally, a test
scenario template generated from a filtered cluster and/or
representing a filtered cluster is not suggested to a user. Alter-
natively or additionally, a filtered cluster is not utilized for
generating a test scenario template and/or does not have a test
scenario template to represent it. Optionally, clusters are fil-
tered according to their size. For example, clusters of runs of
test scenarios that contain less than a predetermined number
of runs are filtered. Optionally, clusters are filtered according
to the number of their associations. For example, runs of test
scenarios in a cluster may be associated with certain organi-
zations (e.g., each run may be associated with an organiza-
tion). Clusters containing runs that are associated with too
few different organizations may be considered too homog-
enous and filtered.

Test Scenario Templates

A test scenario template may include various test steps that
need to be performed by a user in order to test certain aspects
of'a system being tested. Optionally, in some embodiments, a
test scenario template may be lacking one or more values that
need to be provided in order to run a test scenario based on the
test scenario template. In such a case, a user running a test
scenario based on the template may be required to enter the
one or more values that need to be provided, in order to
complete the template of the test scenario; alternatively, the
one or more values and be calculated and/or guessed. In one
example, a test scenario template may describe a test scenario
in which an order process is completed; the template may be
lacking a customer name and product ID, and in order to run
an instantiation of the template, a user may be required to
enter the lacking details. In another example, a template may
be of a test scenario in which rush shipping is performed; a
screen presented to the user may already have the rush ship-
ping box checked, but the user may still need to add details
such the client account number and shipping address.

In one embodiment, a template may include certain values
from which a user may be required to choose in order to run
a test scenario instantiated from the template. For example, a
template may have various values for a discount (e.g., 10%,
20%, or 50%); a user needs to choose from in order to com-
plete a transaction that is part of the template. Optionally, the
values the user may need to choose from are derived from one
or more runs of test scenarios that were used to generate the
template. For example, the aforementioned values of the dis-
count are the most popular values found to be used in runs of
test scenarios from which the template was generated.

In some embodiments, one or more runs of test scenarios
may be used in order to generate a test scenario template to

US 9,311,224 B1

43

represent them. Optionally, the test scenario template is gen-
erated by a template generator module. In one example, the
runs of test scenarios may belong to a cluster. Optionally, the
test scenario template may identify, for its corresponding
cluster, one or more transactions used by test scenarios
belonging to the cluster. Additionally or alternatively, the test
scenario template may identify a way of using transactions
that are part of the test scenarios whose runs belong to the
cluster. For example, a template may define the order of
programs that are to be called, the type of actions that are to be
taken by a user (e.g., what fields to fill, what buttons to push),
and/or provide default values to at least some of the fields
(e.g., enter default values to some fields that appear on screens
that are part of test scenarios generated from the template).
Additionally or alternatively, a test scenario template may
identify one or more possible values that may be used to run
a transaction identified by the template.

It is to be noted that phrases such as “identifies a transac-
tion” involves any type of transaction identification, such as a
transaction identification number, a name of a transaction, a
description of a transaction, a screenshot of a transaction,
computer code of a transaction, and/or any other method that
enables ahuman and/or a computer to link between a possible
value and a transaction. Additionally, identifying a transac-
tion may involve noting a transaction identification. In one
example, noting a transaction identification involves storing
the transaction identification; for example, a template may
store transaction identification numbers that are to be
executed when running an instantiation of the template. In
another example, noting a transaction identification involves
providing the transaction identification. For example, upon a
query, scanning a template may generate and/or transmit
names of transactions that are stored in it.

Generating the template may involve utilizing information
from a plurality of runs of test scenarios. For example, one or
more test steps, commands, and/or values may be copied from
at least one of the plurality of runs of the test scenarios and
placed in the template. Additionally or alternatively, informa-
tion contained in at least some of the plurality of runs may be
analyzed in order to determine certain test steps, commands,
and/or values are to be used in the template. Note that not all
information in the plurality of run of the test scenario needs to
be utilized to generate the test scenario template. For
example, a test scenario template may include a proper subset
of test steps included in certain runs. In another example,
certain runs, such as certain runs in a cluster, may be disre-
garded when generating a template based on other runs in the
same cluster.

In some embodiments, template generation may be based
on information obtained from one or more test scenarios.
Optionally, instantiations of the one or more test scenarios are
runs of test scenarios obtained and/or identified from activity
data of users. In one example, a test scenario may include a
script comprising test steps, and one or more test steps from
the script are included in the template. Note that the script
may be one various types of media; for example, a hard copy
document (e.g., paper), an electronic document (e.g., a
Microsoft Word™ or a PDF document), and/or a list of com-
puter commands (e.g., a script for an automatically run test
scenario). In another example, a test scenario may include
certain values that may be altered by a user running instan-
tiations of the test scenario (e.g., the certain values may be
default values). In this example, to generate the template it
may be desirable to utilize a certain value from a test scenario,
rather than a user-provided value from a run that is an instan-
tiation of the test scenario.

10

15

20

25

30

35

40

45

50

55

60

65

44

A test scenario template may be generated based on data
coming from several sources. In one embodiment, a template
is based on automatic test scenarios (e.g., scripts run auto-
matically by a program without any essential human inter-
vention). Additionally, the template may also be based on the
runs of the same test scenario. Thus, certain values in the
template may come from the test scenarios, while other val-
ues may come from the runs. In another example, a template
may be based on runs coming from different organizations.
The template may contain certain screens coming from a first
organization (e.g., as they appeared in runs associated with
the first organization), while other screens in the template
may come from runs associated with a second organization.

In one embodiment, a test scenario template is generated
from a first run of a test scenario run by a first user and a
second run of a test scenario run by a second user belonging
to a second organization. Optionally, the first and second runs
were obtained from monitoring of the first and second users,
respectively. Additionally, the first organization may be dif-
ferent from the second organization and the first user is not the
second user. The test scenario template generated from the
first and second run identifies a transaction used in the first
and second runs and one or more possible values for running
the transaction. Optionally, additional runs of test scenarios,
besides the first and second runs, are used to generate the test
scenario template.

In one embodiment, at least one of the possible values for
running a transaction in a template generated from first and
second runs may be derived from values obtained from the
first and/or second runs. Optionally, the at least one of the
possible values for running the transaction does not appear in
each of the first and second runs. For example, the at least one
of the possible values is an average of a first value from the
first run, and a second value form the second run, and the first
value does not equal the second value. Optionally, the test
scenario template includes a combination of the possible
values that may be used to run the test scenario template, and
the combination does not appear in any of the first and second
runs. For example, a combination of possible values involves
fields f; and f,; the first run has values v, and u, for the fields
f, and f,, respectively, and the second run has values v, and u,
for the fields f; and f,, respectively. In addition, v, does not
equal v, and u, does not equal u,. In this example, if the test
scenario template has a value v, for f; and u, for f,, then it
contains a combination of possible values that does not
appear in any of the first and second runs.

In one embodiment, the first and second runs upon which a
template is based, may each be manual, semi-automatic, or
automatic runs of test scenarios. In one example, a test sce-
nario template is generated from a first run of a first test
scenario which is a manual test scenario and a second run of
a second test scenario which is an automatic test scenario. In
another example, a test scenario template is generated from a
first run of a first test scenario and a second run of a second test
scenario, and both the first and second runs are automatic.

In another embodiment, the first test scenario and second
test scenario are the same test scenario. Thus, the first run and
the second run are instantiations of the same test scenario. In
this case, despite being runs of the same test scenario, the first
and second runs may be different (e.g., due to diftferent inputs
provided by a user during their running). Alternatively, the
first test scenario and second test scenario may be different
test scenarios. Thus, the first run and the second run are runs
of different test scenarios; however, the first and second runs
may be similar due to similarities (despite being different)

US 9,311,224 B1

45

between the first and second test scenarios and/or similarities
in inputs provided by the user while running the first and
second runs).

In one embodiment, generating a test scenario template
involves receiving multiple runs (e.g., runs belonging to a
cluster of similar runs), and selecting at least a first run and a
second run, from among the multiple runs, upon which the
template is to be based. Optionally, the first and second runs
are selected such that they belong are runs of different users
and/or runs of users belonging to different organizations.
Optionally, the first and second runs are runs that exhibit, on
average a high similarity to the multiple runs (e.g., they are
similar to a cluster centroid). Optionally, the first and second
runs are selected such that other of multiple runs have a
similarity to either the first run or the second run that reaches
a predetermined threshold. Optionally, the first and second
runs are selected according to a profile, such as a profile of a
certain user. Optionally, the profile indicates transactions and/
or values typically utilized by the certain user, and the first and
second runs that are selected involve transactions and/or val-
ues that appear in the profile.

In one embodiment, generating a test scenario template
from a cluster of runs of test scenarios involves identifying a
representative run of a test scenario for the cluster, and using
the representative run of a test scenario as basis for the at least
one template.

In one embodiment, generating a test scenario template
from a run of a test scenario may involve utilizing information
from the run of the test scenario. For example, one or more
test steps, commands, and/or values may be copied from the
run and placed in the template. Additionally or alternatively,
information contained in the run may be analyzed in order to
determine certain test steps, commands, and/or values are to
be used in the template. Note that not all information in the
run of the test scenario needs to be utilized to generate the test
scenario template. For example, the template may include a
proper subset of test steps included in the run of the test
scenario. Optionally, certain information in the run which
may be deemed proprietary is not utilized for the template.
Additionally or alternatively, certain information in the run
which may be deemed proprietary is removed from the tem-
plate.

In another embodiment, generating a test scenario template
from runs of test scenarios (e.g., the runs belong to a cluster of
similar runs of test scenarios), may involve utilizing values of
a field, as they appear in runs, in order to set the value of the
field in the test scenario template.

In one embodiment, the value for the field in the test sce-
nario template is selected from the values of the field in the
runs of test scenarios in the cluster. For example, the value of
the field in the template is set according to the value of the
field in a randomly selected run of a test scenario from the
cluster.

In one embodiment, the value for the field in the test sce-
nario template is generated by a function with one or more
parameters that are set according to the values of the field in
the runs of test scenarios in the cluster. Optionally, the value
generated by the function is not a value found in any of the
runs belonging to the cluster. For example, in order to fill the
field “age” in the template, a distribution of the values of
“age” in runs in the cluster may be learned, and then the value
in the template may be set according to the expectation of the
learned distribution or randomly drawn according to the dis-
tribution. In this example, the resulting value of “age” may
not be an actual value that appears in any of the runs belong-
ing to the cluster.

25

30

40

45

46

Test scenario templates may be suggested to a user so that
the user may run an instantiation of the templates on a system
to which the user belongs and/or is associated with. Option-
ally, a template may be generated from one or more runs of
test scenarios associated with various organizations to which
the user does not belong.

In some embodiments, a user is suggested to run a test
scenario template by presenting the user with a suggestion on
a user interface. For example, the user interface may be a
screen (e.g., monitor, image projected on a screen, and/or
augmented/virtual reality display). In another example, the
user interface may involve a speaker. Optionally, the user may
interact with a system via the user interface in various ways;
for example, touch (e.g., via a touch screen), typing (e.g., on
a physical and/or virtual keyboard), a hand-operated control
device (e.g., a mouse), and/or voice commands. Optionally,
the user is given an opportunity to modify via the user inter-
face, data related to the instantiation and presented on the user
interface; for example, the user may modify default values,
set according to the template, and presented on a screen that
is presenting while running an instantiation of the template.
Optionally, the user interface may initiate an instantiation of
a test scenario template; for example, the user interface may
present a first screen of the test scenario template and prompt
the user to take a certain action to advance execution of the
template.

In one embodiment, a user is recorded while running a
certain test scenario. If it is identified that the certain test
scenario is similar to a test scenario template (e.g., the certain
test scenario involves similar test steps, transactions, and/or
values as those involved in the template), it may be suggested
to the user to run an instantiation of the test scenario template.
Optionally, a suggestion to the user to run an instantiation of
the template is made via a user interface.

In another embodiment, a profile of a user is utilized to
suggest to the user to run a test scenario template appropriate
to the user based on information included in the profile. In one
example, the profile may include various information regard-
ing the user and/or an organization to which the user belongs,
such as information regarding modules, business processes,
and/or transaction utilized by the user and/or organization. In
another example, the profile may include runs of the user
and/or users belonging to a certain organization, and/or data
derived from the runs. In addition to the profile, and/or instead
of it, the suggestion of a template to the user may be done
according to other factors such as coverage of templates,
importance of templates, ranking of templates, and/or con-
nectivity factors of templates, as described in more detail
below.

Coverage

In order to validate that certain system elements operate
correctly after installation, customization, a change, and/or
an upgrade is done to the system—it is often the case that
many test scenarios need to be run. In order to validate the
system’s performance, it is desirable that the test scenarios
that are run should cover many elements that may be related
to, and/or affected by, the installation, customization, change,
and/or upgrade. For example, the elements may include vari-
ous transactions that may exhibit undesired behavior due to
the certain configuration change and/or upgrade; each
executed test scenario may be able to be used to test a subset
of'the transactions that are likely to be affected by the change,
and/or update, in order to determine if unwanted system
behavior occurs that involves one or more transactions.
Therefore, the coverage offered by a set of test scenarios (or
test scenario templates), such as which modules, business
processes, and/or transactions are evaluated by running a set

US 9,311,224 B1

47

of test scenarios, becomes an important consideration when
selecting which test scenarios to run. Ideally, it would be
desirable to obtain as large coverage as possible with test
scenarios, however, often restrictions stemming from limited
resources for running test scenarios have also to be taken into
account.

In one embodiment, coverage refers to a percent of busi-
ness processes, used by an organization, that are sufficiently
tested by test scenarios in relation to the total number of
business processes used by an organization or a certain user.
For example, if 40% of the business processes run by users of
an organization are sufficiently tested by certain test sce-
narios, then the coverage of the certain test scenarios is 40%.
In some cases in order for a module, business process, and/or
transaction to be sufficiently tested, more than one aspect of
the module, business process, and/or organization needs to be
tested. This may involve running multiple tests in order to
cover the more than one aspect. For example, different com-
binations of input data for the same screen need to be pro-
vided in order to test various aspects of a certain business
process.

In one embodiment, a required coverage for a certain user
that runs test scenarios, is received and utilized for suggesting
test scenario templates for the user. For example, the required
coverage may list certain transactions that need to be evalu-
ated with test scenarios run by the user, and optionally the
number of test scenarios that need to be run to evaluate at least
some of the transactions. Alternatively or additionally, the
required coverage may indicate what percentage of a sys-
tem’s transactions need to be evaluated by the test scenarios.
In another example, the required coverage may indicate
which business processes, screens, and/or specific fields need
to be evaluated by running test scenario.

In one embodiment, achieving a required coverage is done
by evaluating a large number of test scenario templates and
estimating coverage achieved by individual templates and/or
subsets of templates. Following the evaluation, a subset of
templates that includes at least one template is suggested to
the user in order to achieve the required coverage. Optionally,
the suggested subset that includes at least one template is a
subset with an essentially minimal number of templates and/
or involves performing an essentially minimal number of test
steps. It is to be noted that by an “essentially minimal” num-
ber it is meant a number close to the absolute minimal pos-
sible, for example up to 10% more than the absolute mini-
mum. In some cases, the absolute minimal number of
templates may be determined by an exhaustive evaluation of
all possible subsets of templates; however, this may prove
intractable if a large number of templates are involved.

In one embodiment, calculating the required coverage for a
certain user is based on a usage information of a certain user.
For example, by analyzing the usage information a list may be
prepared of certain modules, business processes, and/or
transactions the user frequently utilizes. This list can then be
used to guide a search for a certain subset of test scenario
templates that tests aspects of items on the list which need to
be tested.

Finding a minimal sized subset of template obtaining a
desired coverage need not require exhaustive search in every
case. Those skilled in the art may recognize that there are
structured methods for evaluating a search space of subsets of
templates such as branch-and-bound approaches, or A*
searches that enable finding the essentially minimal subset
without necessarily evaluating all subsets of templates. In
addition heuristic search methods may be used, such as simu-
lated annealing, genetic algorithms, and/or random walks in
order to quickly find subsets with a small number of templates

10

20

25

30

35

40

45

50

55

60

65

48

(but not necessarily minimal). Additionally, optimization
algorithms that involve constraint satisfaction may be used to
efficiently find an essentially minimal subset.

In one embodiment, a goal of a search for a subset of
templates that achieves a certain coverage is to find a subset of
templates, which involves a minimal amount of testing time
on the user’s part. Achieving the required coverage for the
certain user involving the shortest testing time for the user
may be done by estimating time to achieve a required cover-
age for the certain user by many templates (e.g., in a search
performed in the space of possible subsets of templates). And
after evaluating the time it takes to run each of the many
templates and/or subsets of templates, suggesting the certain
use utilize a subset that includes at least one of the templates,
that both achieves the required coverage and requires an
essentially minimal time to complete. In this case, the sug-
gested templates are likely to be templates relevant to sce-
narios that are expected to be used by the certain user, and are
likely to be spread to approximately achieve a uniform cov-
erage of the scenarios with the suggested templates.

In some cases, it is useful to refer to a coverage of a test
scenario template with respect to a test scenario. In one
embodiment, a template is said to cover a certain test scenario
if it involves essentially the same test steps as the test sce-
nario. Additionally or alternatively, coverage of a template
with respects to a test scenario may be the percentage of test
steps of the test scenario that are included in the template.
Similarly coverage of a subset of templates with respect to a
test scenario may refer to the test steps in the test scenario that
are included in at least one of the templates in the subset.

Importance of a test scenario for a certain user may also be
an objective that guides the suggestion of a template to the
certain user. In one embodiment, test scenario templates that
cover a test scenario are estimated to be important are sug-
gested to the certain user before other templates that are
estimated to be less important.

There are various ways in which importance of a test sce-
nario may be evaluated. In one example, the importance of a
certain test scenario is determined by frequency in which the
certain test scenario is used relative to frequency in which
other test scenarios are used. Thus, atest scenario often run by
the certain user may be deemed significantly more important
than a test scenario rarely run by the certain user. In another
example, importance of a certain test scenario is determined
by characteristics of users that run the certain test scenario,
compared to characteristics of users that run other test sce-
narios. For instance, if a certain test scenario is run primarily
by users that hold high positions in an organization’s hierar-
chy, it is likely that the certain test scenario is more important
than another test scenario that is used primarily by users on
the lower rungs of the organization’s hierarchy. In yet another
example, importance of a certain test scenario is determined
by a financial value associated with the certain test scenario
compared to a financial value associated with other test sce-
narios. For example, a test scenario that involves retaining an
unsatisfied customer may be given a high financial value for
the organization compared to another transaction which
involves sending customers a notice that their order is still
pending.

Profile of a User

A profile of a user may include data related to the user, an
organization to which the user belongs, and/or activity of the
user on a software systems, such as software systems associ-
ated with the organization. Optionally, at least some of the
data in a profile may be considered proprietary data. Option-
ally, the proprietary data may identify details regarding the
user and/or an organization related to the profile, such as an

US 9,311,224 B1

49

organization to which the user belongs. In one example, a
profile may include proprietary data about the user (e.g., age,
address, languages, skills), and/or proprietary data related to
arole of the user in the organization (e.g., job title, placement
of user in organizational chart, and/or permissions and/or
privileges of the user). In another example, the profile may
include proprietary data related to the organization to which
the user belongs (e.g., field of operation, name and sizes of
departments, products and/or services provided by the orga-
nization, permissions and/or accounts of the organization,
and/or customers and/or suppliers of the organization). In yet
another example, proprietary data included in a profile of a
user may be indicative of activity of the user. In this example,
the activity may have been previously observed and/or
recorded (e.g., by monitoring of the user). Additionally or
alternatively, the activity may be predicted based on charac-
teristics of an organization to which the user belongs, the
position the user holds in the organization, and/or other
attributes of the user (e.g., permissions and/or accounts of the
user).

In one embodiment, a profile of a user includes data that is
indicative of test scenarios relevant to the user and/or tem-
plates of test scenarios relevant to the user. For example, the
profile may include attributes such as modules used by the
user, transactions used by the user (e.g., identifiers of trans-
actions and the number of times they were executed), and/or
characteristics derived from activity of the user (e.g., accesses
to databases, quantities of network data generated, reports
generated by the user). Optionally, a profile of a user may
include runs of test scenarios of the user, and/or results of a
summary and/or analysis of runs of test scenarios of the user.
For example, the profile may include a list of the transactions
that are executed often in runs of test scenarios of the user.
Optionally, a profile of a user may include information indica-
tive of test scenario templates utilized by a user (e.g., tem-
plates which the user ran instantiations of).

A profile of a user may be used in order to suggest to the
user to utilize a certain test scenario template. Optionally, the
template may be selected from among one or more test sce-
nario templates generated from clusters of runs of test sce-
narios. For example, given a profile that indicates that a user
performs many transactions involving database updates, the
system may recommend for the user a template generated
from a cluster that contains runs of test scenarios that involve
database updates. In another example, if the profile of a user
contains samples of runs of test scenario run by the user, the
system may suggest to the user to use a template generated
from a cluster that contains test scenarios that are similar to a
test scenario from which a run in the profile was instantiated.
In yet another example, a profile includes state information
regarding an organization to which a user belongs, such as the
time zone and location of a certain site. This information may
be used to suggest a certain template for a user testing a
software system at the site. For example, a template that
involves a report of a vacation of a user in advance may be
relevant to an organization site located in France, but not for
a site in the US (where such a practice may not be typically
required).

Inone embodiment, a profile of auser includes permissions
of a user. For example, if a profile indicates that a user has
permission to approve vacations, the user may be suggested to
run a test scenario instantiated from a template that includes
such a task. However, if the user does not have such a per-
mission, then the certain template is irrelevant for the user. In
another example, a profile describes a position of the user in
the organization hierarchy. In this example, a first user may
belong to the marketing department, and thus has permission

20

30

35

40

45

55

50

to enter a new potential client in to the system. A second user
may belong to the sales department, and thus can send an offer
to a client. Thus, based on the profiles of the users, the system
may suggest relevant templates for the users: to the first user
atemplate that involves entering client data, and to the second
user a template that involves making an offer to a client, and
not vice versa.

In some embodiments, a profile may belong to an organi-
zation. For example, it may describe a generic user belonging
to the organization. Optionally, a profile of an organization
may be utilized to perform initial filtering of test scenario
templates for users belonging to the organization. For
example, according to a profile of an organization, the orga-
nization may not be authorized to run a test scenario instan-
tiated from a certain template (e.g., due to lack of permission).
This may make the template irrelevant for each and every user
belonging to the organization. However, if the organization is
authorized to run an instantiation of the test scenario tem-
plate, according to the profile of the organization, then a
profile of an individual user belonging to the organization
may need to be checked in order to determine if the template
is relevant to the individual user (e.g., to check whether the
user has permission to run a test scenario instantiated from the
template). In another example, a profile may indicate a
method in which the organization conducts business. For
instance, the profile may indicate a policy of making pay-
ments for goods. Thus, if the profile indicates that the orga-
nization always pays after receiving goods, a template that
describes advanced payment for goods is not relevant for any
user in that organization.

In one embodiment, a profile of a user may include usage
data of an organization to which a user belongs. For example,
the profile may describe which modules are relevant to orga-
nization. Based on the profile, a user will be suggested tem-
plates that are relevant to the organization. Similarly, the
profile may describe actions that users belonging to the orga-
nization may have permission to perform. For example, if
users of an organization are not authorized to access a certain
database, a user belonging to the organization will not be
provided with a template that includes an access to the certain
database.

In some embodiments, a profile of a user and/or an orga-
nization may represent usage of transactions by the user and/
or users belonging to the organization. Optionally, a profile
that represents usage of transactions may be represented in
various ways. The profile may include a list of runs of test
scenarios, clusters of runs, and/or transactions utilized by the
user. Optionally, the usage data may be represented as a
vector in which each dimension may correspond to a certain
transaction, cluster of runs, and/or template. In one example,
if a user utilized a transaction, a value of the vector in a
corresponding dimension is 1, otherwise it is 0. In another
example, a value of a dimension in the vector that corresponds
to a certain cluster of runs is set according to the number of
runs in the cluster that were run by the user. Thus, the more the
user used transactions with corresponding runs in the certain
cluster, the higher the corresponding value in the vector.

Having a vector representation for at least some of the
values in a profile makes it easier, in some embodiments, to
compare between profiles (e.g., to find similar vectors repre-
senting similar profiles of users). Additionally, vector repre-
sentation of profiles may make it easier to perform math-
ematical operations, such as vector dot-product or matrix
factorization.

A profile of a user may be utilized to customize a test
scenario template for the user. For example, by filtering the
test scenario template in order for it to be more appropriate for

US 9,311,224 B1

51

the user. In one embodiment, a profile of the user may be used
to determine which test steps, from among the test steps
described in a test scenario template, are relevant for the user,
and optionally remove test steps that are irrelevant. For
example, a profile of the user may indicate that the user does
not confirm shipments. A test scenario template, suggested to
the user may include several test steps that culminate with a
test step involving confirming shipment. In such a case, the
last test step may be removed in order to make the test sce-
nario template more appropriate for the user. In one example,
a template may include values related to international ship-
ping; however, if the profile of the user indicates that the user
runs transactions that only involve domestic shipping, certain
values concerning international aspects of the transactions
may be removed from the template (e.g., destination country,
currency conversion rates). In another example, a template
that includes a transaction that is part of an employee evalu-
ation process may include values related managerial assess-
ment of the employee. If the profile of the user indicates that
the user is not a manager, then those details may be irrelevant
for the user. In this case, the user may receive a template that
only includes transactions in which self assessment of the
employee are performed. In another embodiment, a profile of
the user may be used to determine which values utilized in a
test scenario template may be appropriate for the user.
Optionally, values deemed irrelevant to the user may be
removed from the test scenario template suggested to the user.
Optionally, the user may be requested to provide relevant
values instead of the removed irrelevant values. For example,
aprofile of a user may indicate that the user deals exclusively
with domestic customers having domestic addresses. How-
ever, a test scenario template may include default values that
correspond to foreign addresses. In such a case, the foreign
addresses may be removed, and the user may be requested to
provide examples of domestic addresses.

In one embodiment, a profile of a certain user may be
indicative of transactions run by the certain user, and/or clus-
ters containing runs of test scenarios run by the certain user
that use these transactions. Thus, the profile is indicative of a
usage pattern of the user (actual usage and/or expected
usage). Optionally, in order to suggest additional test sce-
narios, test scenario templates, and/or clusters for the user,
collaborative filtering methods, which rely on usage patterns
of other users, may be used.

Collaborative filtering is an algorithmic approach gener-
ally used for making automatic predictions (filtering) about
the interests of a user by collecting preferences or taste infor-
mation from many users (collaborating). For example, by
detecting similarities between the profile of the certain user
and profiles other users, it may be possible to suggest to the
certain user a template that was utilized by the other users, but
has not yet been utilized by the certain user. The underlying
assumption is that since the certain user and the other users
utilized some of the same templates (as evident from the
similarity of their respective profiles), it is likely that a tem-
plate that was utilized by the other users may be useful for the
certain user.

There are many algorithmic collaborative filtering
approaches that may be utilized by those skilled in the art to
make recommendations for a user based on similarities of a
profile of a certain user to profiles of other users. For example,
memory-based methods may be used to select a profile simi-
lar to the profile of the certain user, such as using nearest-
neighbor searches. In another example, model based algo-
rithms may rely on the profiles of the other users to generate
a model of test scenarios, templates, and/or clusters suitable
for the certain user. The model generation may utilize many

10

15

20

25

30

35

40

45

50

55

60

65

52

algorithmic approaches such as Bayesian networks, latent
semantic models, singular value decomposition (and/or other
forms of matrix factorization), and/or clustering. In still
another example, a combination of the memory-based and the
model-based collaborative filtering algorithms may be used.
In some cases, a hybrid approach that combines memory-
based and model-based approaches may help overcome
shortcomings of the individual approaches.

In one embodiment, a first profile of a first user is consid-
ered similar to a second profile of a second user if the first and
second profiles indicate that both profiles have a certain num-
ber of transactions, clusters, and/or templates in common, and
the certain number reaches a predetermined threshold. Addi-
tionally or alternatively, the first and second profile may be
considered similar if the first and second profiles have a
certain proportion of transactions, clusters, and/or templates
in common, and the certain proportion reaches a predeter-
mined threshold.

In another embodiment, a first profile of a first user is
considered similar to a second profile of a second user if a
similarity function applied to vector representations of the
first and the second profiles indicates that the similarity
between the vectors reaches a predetermined threshold. For
example, the similarity function may compute the angle (dot
product) between the vectors, and if the cosine of the angle is
larger than a certain predetermined threshold, the profiles
may be considered similar. In another example, the Pearson
correlation may be used to determine the similarity of two
vectors. In yet another example, similarity between binary
vectors representing profiles may be determined according to
the Hamming distance of the vectors (e.g., if the hamming
distance is below a predetermined threshold, the profiles are
considered similar).

In one embodiment, profiles utilized by a collaborative
filtering algorithm to suggest templates for a certain user to
utilize come from users belonging to organizations that are
different from an organization to which the certain user
belongs. Often, this can help suggest to the certain user test
scenario templates that may be useful for the certain user, but
are however unknown or not typically utilized within the
organization of the certain user. This may help increase the
scope, coverage, and/or diversity of aspects that are tested by
runs of test scenarios of the user, which can increase the
efficiency of test scenarios, possibly reducing the number of
test scenarios that need to be run.

Cleaning Proprietary Data

In one embodiment, a test scenario template generated
from one or more runs of test scenarios does not include
proprietary data captured during the stage of monitoring users
that ran the test scenarios. Optionally, the one or more runs of
test scenarios belong to a cluster and the test scenario tem-
plate is generated as a representative of the cluster.

In one embodiment, determination of whether certain data,
which appears in a run of a test scenario and/or is obtained
from processing data from the run, is proprietary data is based
on the repetitiveness of the data in runs of test scenarios. For
example, if a certain value appears in only a small proportion
of the runs, in runs of a small number of users, and/or runs
associated with a small number of organizations, the certain
value may be considered proprietary. Conversely, if a certain
value is the same in many runs, or in runs of at least a certain
proportion and/or number of the users, and/or is associated
with at least a certain proportion and/or number of organiza-
tions, that value may be considered to be non-proprietary.
Optionally, a predetermined proportion is used as a threshold
to determine if a certain value is proprietary or not. For
example, if a number of different users which ran runs of test

US 9,311,224 B1

53

scenarios that included the certain value is less than the pre-
determined threshold, the value is considered proprietary for
those users who had runs that included the value. Otherwise,
it may be considered non-proprietary (since many users had
the value in one of their runs). It is to be noted, that “prede-
termined” refers to both a fixed value known a priori (e.g., a
threshold of 10 users) and/or a value derived from known
logic (e.g., 10% of the users).

In one embodiment, data for which one or more of the
following is true may be considered proprietary data associ-
ated with an organization and/or proprietary data belonging to
the organization: the data describes an aspect of the organi-
zation and/or a user belonging to the organization; the data
appears in a database of the organization; the data appears in
arunof atest scenario associated with the organization and/or
is derived from the run; and/or the data is generated by a
software system associated with the organization. For
example, any data on a server belonging to an organization
may be considered proprietary data associated with the orga-
nization. In another example, any data derived from analysis
of runs of test scenarios associated with an organization may
be considered proprietary data of the organization. Addition-
ally or alternatively, data for which one or more of the fol-
lowing is true may be considered proprietary data of user
and/or proprietary data belonging to the user: the data
describes an aspect of a user; the data describes an organiza-
tion to which the user belongs; the data appears in a database
of the user; and/or the data appears in a run of a test scenario
run by the user.

It is to be noted that as used herein, a phrase like “propri-
etary data” may refer to proprietary data of an organization
and/or proprietary data of a user. Additionally, phrases like
“proprietary values” and “proprietary data” may be used
interchangeably in this disclosure.

In one example, proprietary values are removed from a test
scenario template generated from a certain cluster (i.e., one or
more runs belonging to the certain cluster were utilized to
generate the template). Optionally, the proprietary values are
removed by a data cleaner module that operates on the gen-
erated template. Additionally or alternatively, removal of pro-
prietary data may be done by other modules belonging to the
system, such as a template generator, a customization mod-
ule, a ranking module, and/or a user interface. Optionally,
removing the proprietary values involves selecting a value
from the template, and removing the selected value from the
template if the selected value appears in less than a first
predetermined number of runs of test scenarios in the certain
cluster. Additionally or alternatively, the selected value may
be removed if it appears in runs belonging to the certain
cluster that are associated with less than a second predeter-
mined number of different organizations. In this example,
both the first predetermined number and the second predeter-
mined number are greater than one. Optionally, the first pre-
determined number and/or the second predetermined number
are proportional to the number of user with runs belonging to
the certain cluster and/or the number of organizations asso-
ciated with runs belonging to the certain cluster. For example,
the first predetermined number may be set to be the maximum
of two and 10% of the users with runs in the certain cluster.

Determining whether data is proprietary may utilize a pro-
file of a user and/or a profile of an organization. For example,
any data that appears in a profile of a user and/or an organi-
zation may be considered proprietary and thus not allowed to
be included in a template. In another embodiment, the profile
may indicate certain data is proprietary (e.g., by placing itaan
exclusion list which prohibits utilization of the data in tem-
plates).

10

20

25

30

35

40

45

50

55

60

54

In one embodiment, testing whether certain data is propri-
etary is done by querying a database (e.g., a database that
contains samples of proprietary data). Additionally or alter-
natively, the certain data may be submitted to a procedure that
evaluates the data to determine whether the data is likely to be
proprietary. For example, the procedure may perform seman-
tic and/or syntactic analysis of the data to check whether the
certain data has a certain meaning and/or contains certain
patterns that indicate that it is likely to be proprietary. For
example, the procedure may scan the certain data for strings
like “bank account”, “address”, and/or “social security num-
ber”.

In another embodiment, a user may provide feedback on
certain data which indicates whether the certain data is pro-
prietary. For example, the user may review values of data
fields prior to running a test scenario and indicate which
values the user considers proprietary. Additionally or alterna-
tively, while a test scenario is running, the user may mark
certain data as proprietary (e.g., data the user considers
should not be seen by the user or other users). Optionally, the
user may provide feedback the certain data via a user interface
on which the user is running the test scenario.

In yet another embodiment, determining whether a certain
value may be proprietary may be assisted by noting the
source, location, and/or data structure that contains the cer-
tain value. For example, in certain systems, a value that
appears in a checkbox on a screen is likely to be a default
value of the system, and thus not likely to be proprietary.
However, free text fields on screens are more likely to contain
data entered by a user, and are thus likely to be proprietary. In
a another example, in which the certain value appears in a
drop-down menu in a screen, it might be necessary to deter-
mine from the context whether values in the drop-down menu
are proprietary or not. Additionally, certain systems may be
built in such a way that makes it relatively easy to determine
which data is proprietary and which is not. For example, in
SAP ERP meta data, which typically includes general (non-
proprietary) data, is clearly marked.

In one embodiment, a value in a test scenario template that
is considered proprietary is removed from the template.
Optionally, the proprietary data is removed by a data cleaner
module, a template generator module, a customization mod-
ule, and/or another module and/or combination of modules.
In one example, a value may be deleted from a template;
consequently, the template may contain an indication of miss-
ing data (corresponding to the deleted value); prior to running
a test scenario based on the template and/or during the run of
the test scenario, the missing data needs to be provided (e.g.,
the user is prompted to provide it). Alternatively, a value in a
test scenario template that is considered proprietary may be
removed from the template by replacing it with a default or
“dummy” value.

In one embodiment, proprietary data is not included in a
template. For example, a module generating a template and/or
a module customizing a template, check whether certain val-
ues are proprietary (e.g., by checking whether a certain flag
related to the certain values is raised, or by submitting the
certain values to a procedure for evaluation). If the certain
values are deemed to be proprietary, they are not included in
the template.

Proprietary data may be removed from runs of test sce-
narios at different stages. In one embodiment, the proprietary
data is removed from runs of test scenarios as the runs are
recorded and/or identified. For example, a “scrubbed” version
of runs, which does not contain certain proprietary data, may
be the data that is provided to components of the system (e.g.,
a clustering module and/or template generator). Optionally,

US 9,311,224 B1

55

determining what proprietary data is may relate to general
statistics (e.g., utilization of certain elements and/or values by
a certain proportion of organizations).

In another embodiment, proprietary data is removed from
runs after clustering of the runs is performed. Optionally,
determining what data in the runs should be considered pro-
prietary utilizes the fact that after clustering, clusters contain
similar runs. In one example, the fact that runs belong to
clusters may enable the identification of certain values that
are shared by many runs (which may indicate that the certain
values are not proprietary), or shared by a few runs (which
may indicate that the certain values are proprietary).

In some embodiments, test scenario templates are gener-
ated from one or more runs of test scenarios belonging to a
certain cluster. Optionally, the templates are generated in
such a way that they are not likely to include data that may be
easily traced to specific runs in the certain cluster, users that
ran runs belonging to the certain cluster, and/or organizations
associated with runs belonging to the certain cluster. In these
embodiments, generating a template may involve selecting a
value from a run of a test scenario belonging to the certain
cluster, checking whether the value appears in at least a first
predetermined number of the runs in the certain cluster;
checking whether the value appears in runs in the certain
cluster that are associated with at least a second predeter-
mined number of different organizations; and if both condi-
tions are positive, enabling the test scenario template to utilize
the selected value. Optionally, if at least one of the conditions
is negative the test scenario template is not allowed to utilize
the selected value.

In one embodiment, removing proprietary data from a test
scenario template generated from one or more runs of test
scenarios involves removing most output fields from the runs.
Consequently, most of the information generated in the runs
may be removed. In one example, most of the information
output in the runs is considered proprietary, and is therefore
removed. Optionally, as a result of removing most of the
output fields, the test scenario template does not include
expected values for most test steps. Optionally, running an
instantiation of the test scenario template may require a user
to provide values in most of the test steps.

Customizing a Test Scenario Template

Test scenario templates generated from runs of test sce-
narios of users belonging to different organizations may not
be ideal for a certain user from a certain organization. For
example, the templates may include information such as val-
ues that do not suite the certain user and/or the certain orga-
nization, and/or include certain test steps that are irrelevant
for the certain user and/or the certain organization. It there-
fore may be beneficial to customize test scenario templates
for a certain user and/or a certain organization. Optionally,
customizing a test scenario template may be done as part of
generating the template (e.g., by the template generator), by
another module such as a customization module, or a combi-
nation of modules.

In some embodiments, customizing a test scenario tem-
plate involves adding to the test scenario template one or more
values that are relevant to a certain user and/or a certain
organization. Optionally, the one or more values that are
added replace existing values in the template that may be less
appropriate for the certain user and/or the certain organiza-
tion. Optionally, at least some of the values added to the
template by the customizing replace proprietary data that has
been removed from the template (e.g., by a data cleaner
module).

In some embodiments, customizing a test scenario tem-
plate is done using proprietary data related to a certain user

10

15

20

25

30

35

40

45

50

55

60

65

56

and/or a certain organization. The proprietary data may be
directly related to the certain user and/or the certain organi-
zation, such as internal organizational data of the certain user
and/or the certain organization, and/or data obtained by moni-
toring the certain user and/or users belonging to the certain
organization. Additionally or alternatively, the proprietary
data may be of a different user and/or different organization,
and based on similarity to the certain user and/or certain
organization the proprietary data is assumed to be useful for
customizing the template.

Proprietary data used to customize a test scenario template
may have various sources. In one embodiment, proprietary
data relevant to a certain user, for whom a test scenario tem-
plate is customized, is obtained by providing the test scenario
template to a different user, prompting the different user to
provide a missing value, and recording an input value pro-
vided by the different user. Alternatively, the same process
may be performed with the certain user, i.e., the test scenario
template is provided to the certain user, the certain user is
prompted to provide a value, and the value provided by the
certain user.

In another embodiment, the proprietary data relevant to the
certain user for whom the test scenario template is custom-
ized is obtained by guiding a user to provide the proprietary
data while semiautomatically executing an instantiation of
the test scenario template. Optionally, the user providing the
proprietary data is the certain user. Providing proprietary data
via semiautomatic execution may involve filling a value into
a field missing a value in an instantiation of the test scenario
template. This may be done by selecting a value from a
database related to the certain user and testing whether the
selected value is congruous with the field. If the selected value
is congruous with the field, filling the field with the selected
value. Otherwise, prompting the first user to provide a value
for the field missing a value. Optionally, selecting the value
utilizes a heuristics-based algorithm that is run on data from
multiple organizations. For example, the selection of the
value may be based in part on determining how often the
value is used by other organizations. Additionally or alterna-
tively, providing proprietary data via semiautomatic execu-
tion may involve filling a value into a field missing a value in
an instantiation of the test scenario template by identifying
users similar to the certain user. Following that, selecting a
value from runs of test scenarios of the users similar to the
certain user and then testing whether the selected value is
congruous with the field. If the selected value is congruous
with the field, the field may be filled with the selected value.
Otherwise, the certain user may be prompted to provide a
value for the field missing a value.

In one embodiment, proprietary data relevant to a certain
user, for whom a test scenario template is customized, is
obtained by marking locations of values that were removed
from the test scenario template, and directing attention of a
user to provide data appropriate for the marked locations.
Optionally, the user is the certain user for whom the template
is customized. Optionally, the values removed from the test
scenario template were removed by a data cleaner module.

One source of proprietary data useful for customizing a test
scenario template for a certain user may be a profile of the
certain user. For example, such a profile may be provided to a
module that performs customization of the template. Data in
the profile, such as proprietary information related to the user
and/or the organization may be inserted into the template. For
example, a profile of the certain user may include the user’s
name, address, job title, and/or employee number; these val-
ues may be inserted in their appropriate positions in a cus-
tomized template in order to save the certain user the time and

US 9,311,224 B1

57

effort of inserting them when running an instantiation of the
template. In another example, the profile of the certain user
may include a list of customers the user works with, parts the
user frequently orders, and/or contact information of clients
the user frequently interacts with. These values may be auto-
matically inserted into a template in order to customize it and
make it more relevant to the certain user.

In one embodiment, a profile of a user that is used to
customize atest scenario template is a profile of a generic user
of'an organization. In this case, customizing the template may
utilize information that does not identify a specific user. For
example, to customize a template the system may use activity
data from the profile such as a list of modules that are fre-
quently run, but not use data such as an employee name of a
real employee.

Another source of proprietary data useful for customizing
a test scenario template for a certain user may be a data
generator related to the certain user and/or a certain organi-
zation to which the certain user belongs. For example, the
data generator may be a program that extracts values from a
database related to the certain organization. The database
may hold “real world” information such as actual customer
orders, which can be used to generate tests that are more
relevant.

In one embodiment, customizing a test scenario template
for a first user utilizes a customization module and involves
obtaining proprietary data relevant to the first user and sub-
stituting a non-empty subset of proprietary data removed
from the template with the obtained data. Optionally, the
obtained data undergoes processing prior to being entered
into the template.

In one example, the proprietary data relevant to the first
user is obtained from a previously monitored run of test
scenario associated with the first user; for instance, the run of
the test scenario may have been run by the first user, run by a
user associated to an organization to which the first user
belongs, and/or a user with a similar organizational role as the
first user (e.g., both users are sales managers).

In another example, the proprietary data relevant to the first
user is obtained from parsing a manual test scenario associ-
ated with the first user in order to obtain a value associated
with the first user. For example, the manual test scenario may
be a script for running a test that is intended to be used by the
first user, a user associated to an organization to which the first
user belongs, and/or a user with a similar organizational role
as the first user. After obtaining the value associated with the
first user, a non-empty subset of the removed proprietary data
from the template is substituted with the obtained value.

In yet another example, the proprietary data relevant to the
first user is obtained from analyzing a database of the soft-
ware system associated with the first user to obtain a value
associated with the first user. The database may include data
on and/or be accessed by the first user, a user associated to an
organization to which the first user belongs, and/or a user with
a similar organizational role as the first user. After obtaining
the value associated with the first user, a non-empty subset of
the removed proprietary data from the template is substituted
with the obtained value.

In one embodiment, the customization module is also con-
figured to: provide the customized test scenario template to a
second user, prompt the second user to provide a missing
value, and record an input value provided by the second user.
Optionally, the first user and the second user are the same
user.

Values used for customization of templates may be
obtained, in some embodiments, by exploiting wisdom of the
crowd. This “wisdom” may be gained by analyzing runs of

15

20

40

45

58

users from different organization in order to find certain pat-
terns and common values. In one example, many organiza-
tions have a dummy customer entry for testing; for example,
a customer named “test”. Thus, entering “test” as a user is
likely to allow a test scenario to run, so a customization
module may try using the customer “test” in a template being
customized. In another example, SAP catalog numbers usu-
ally start from 1000, and 1000 usually describes a catalog
number for tests and not a real number. Thus, when custom-
izing atemplate, if a catalog number is needed, the value 1000
may be tried. In both of these examples, the knowledge of
which default values may be gained by examining runs of
users from different organizations. This allows a customiza-
tion module to discover from the crowd certain values that
may not be apparent to whomever is customizing the tem-
plate.

In embodiments described in this disclosure, after gener-
ating a test scenario template from one or more runs of test
scenarios (e.g., using a template generator), the template
might undergo further processing such as removal of propri-
etary data, customization, ranking, and/or the template may
be suggested to the user. Optionally, the one or more runs of
test scenarios belong to a certain cluster of similar runs of test
scenarios. FIG. 9A to FIG. 9G illustrate some, but not all,
combinations of system modules that may be used in embodi-
ments described in this disclosure to process the template
and/or suggest the template to a user.

FIG. 9A illustrates a combination of system modules that
may be used in embodiments in which a template generator
770 generates a test scenario template from one or more runs
of'test scenarios. The template is provided to a ranking mod-
ule 771 that may rank the template, for example, by assigning
it a score proportional to its relevancy to a certain user.
Optionally, the ranking module 771 receives a profile of a
certain user and/or a certain organization and utilizes data
from the profile, in order to rank the template. Following that,
a data cleaner 772 receives the template and may remove
proprietary data from the template. Optionally, the data
cleaner 772 receives a profile related to a certain user and/or
a certain organization, and utilizes the profile to remove cer-
tain proprietary data from the template. After removing pro-
prietary data from the template, the template from which
proprietary was removed is provided to a customization mod-
ule 773 that customizes the template by adding certain data to
the template. Optionally, the customization module 773
receives a profile of a certain user and/or a certain organiza-
tion and adds data from the profile, which relevant to the
certain user and/or organization, to the template. The custom-
ized template from which proprietary data was removed is
then provided to a user interface 774. Optionally, the user
interface 774 presents to a user a suggestion to run an instan-
tiation of the customized template from which proprietary
data was first removed.

Itis to be noted that in this disclosure, though modules may
beillustrated in figures as separate elements, in some embodi-
ments, they may be implemented as a single element that
performs the functionality of modules. For example, the soft-
ware module that implements the template generator 770 may
also perform the tasks of the data cleaner 772. In another
example, the customization module 773 and the data cleaner
772 are realized by the same software programs.

In other embodiments, after being processed by various
modules, a template generated by the template generator need
not be provided to a user interface. For example, it may be
stored in the system for further use. FIG. 9B illustrates a
similar portion of a system to the system illustrated in FIG.
9A, however in this system after being subjected to ranking,

US 9,311,224 B1

59

removal of proprietary data, and customization, a template is
not presented to a user via a user interface.

The order in which a template may undergo processing by
system modules may differ between embodiments. For
example, FIG. 9C illustrates a combination of system mod-
ules which includes the template generator 770 which pro-
vides a template for customization by a customization mod-
ule 775. Following the customization, a data cleaner 776
removes proprietary data from the template. The template is
then provided to a user interface 777, for example, in order to
be suggested to a user. FIG. 9D illustrates a similar system,
however in it a template generated by the template generator
770 is first provided to a data cleaner 778. After removing
proprietary data from the template, the template is provided to
a customization module 779. The customized template may
then be presented to a user via the user interface 777.

In some embodiments, a user interface is not necessarily
used to suggest templates to a user; it may be utilized by other
system modules to perform their task. FIG. 9E illustrates a
combination of system modules that may be utilized in
embodiments, in which a ranking module 782 and a data
cleaner 780 interact with a user interface 781. For example,
the data cleaner 780 may present a template generated by the
template generator 770 to a user on the user interface 781, in
order for the user to mark and/or approve certain proprietary
data the data cleaner found in the template. Additionally, the
ranking module 782 may present a ranking of the template in
order for the user to verify the ranking and/or edit it. Option-
ally, the user may then determine what is to be done with the
template (e.g., should the user run it, save it for later, and/or
discard it). FIG. 9F illustrates a combination of system mod-
ules that may be utilized in embodiments, in which a customi-
zation module 775 utilizes a user interface to perform cus-
tomization of a template. For example, data that was added to
a template generated by the template generator 770 is pre-
sented to a user on a user interface 784 for approval and/or
editing. Following that, the template may be subjected to
removal of proprietary data by a data cleaner 785. For
example, the proprietary data may be added by the user via the
user interface 784.

In some embodiments, a template that is generated by a
template generator does not undergo additional processing by
system modules. For example, as illustrated in F1G. 9G, after
being generated by the template generator 770, the template
may be sent to the user interface 774 (e.g., to be suggested to
a user).

While some ofthe above embodiments may be described in
the general context of program components that execute in
conjunction with an application program that runs on an
operating system on a computer, which may be a personal
computer, those skilled in the art will recognize that aspects
may also be implemented in combination with other program
components. Program components may include routines,
programs, modules, data structures, and other types of struc-
tures that perform particular tasks or implement particular
abstract data types. Moreover, the embodiments may be prac-
ticed with other computer system configurations, such as:
cloud computing, a client-server model, grid computing,
peer-to-peer, hand-held devices, multiprocessor systems,
microprocessor-based systems, programmable consumer
electronics, minicomputers, and/or mainframe computers.
The embodiments may also be practiced in a distributed com-
puting environment where tasks are performed by remote
processing devices that are linked through a communication
network. In a distributed computing environment, program
components may be located in both local and remote com-
puting and/or storage devices. Some of the embodiments may

10

15

20

25

30

35

40

45

50

55

60

65

60

also be practiced in the form of a service, such as infrastruc-
ture as a service (IaaS), platform as a service (PaaS), software
as a service (SaaS), and/or network as a service (NaaS).

Embodiments may be implemented as a computer imple-
mented method, a computer system, and/or as a non-transi-
tory computer-readable medium. The non-transitory com-
puter-readable medium comprises program code which
provides, or participates in providing, instructions to a pro-
cessor. The non-transitory computer-readable medium may
be implemented, for example, via one or more of a volatile
computer memory, a non-volatile memory, a hard drive, a
flash drive, a magnetic data storage, an optical data storage,
and/or any other type of a tangible computer memory to be
invented that is not transitory signals per se. The program
code may be updated and/or downloaded to the non-transitory
computer-readable medium via a communication network
such as the Internet.

Herein, a predetermined value, such as a predetermined
threshold, may be a fixed value and/or a value determined any
time before performing a calculation that compares a certain
value with the predetermined value. A value may also be
considered to be a predetermined value when the logic, used
to determine whether a threshold that utilizes the value is
reached, is known before start of performing computations to
determine whether the threshold is reached.

In this description, references to “one embodiment” mean
that the feature being referred to may be included in at least
one embodiment of the invention. Moreover, separate refer-
ences to “one embodiment” or “some embodiments” in this
description do not necessarily refer to the same embodiment.
Additionally, references to “one embodiment” and “another
embodiment” may not necessarily refer to different embodi-
ments, but may be terms used, at times, to illustrate different
aspects of an embodiment.

The embodiments of the invention may include any variety
of combinations and/or integrations of the features of the
embodiments described herein. Although some embodiments
may depict serial operations, the embodiments may perform
certain operations in parallel and/or in different orders from
those depicted. Moreover, the use of repeated reference
numerals and/or letters in the text and/or drawings is for the
purpose of simplicity and clarity and does not in itself dictate
a relationship between the various embodiments and/or con-
figurations discussed. The embodiments are not limited in
their applications to the details of the order or sequence of
steps of operation of methods, or to details of implementation
of devices, set in the description, drawings, or examples.
Moreover, individual blocks illustrated in the figures may be
functional in nature and therefore may not necessarily corre-
spond to discrete hardware elements.

While the methods disclosed herein have been described
and shown with reference to particular steps performed in a
particular order, it is understood that these steps may be
combined, sub-divided, and/or reordered to form an equiva-
lent method without departing from the teachings of the
embodiments. Accordingly, unless specifically indicated
herein, the order and grouping of the steps is not a limitation
of the embodiments. Furthermore, methods and mechanisms
of the embodiments will sometimes be described in singular
form for clarity. However, some embodiments may include
multiple iterations of a method or multiple instantiations of a
mechanism unless noted otherwise. For example, when a
processor is disclosed in one embodiment, the scope of the
embodiment is intended to also cover the use of multiple
processors. Certain features of the embodiments, which may
have been, for clarity, described in the context of separate
embodiments, may also be provided in various combinations

US 9,311,224 B1

61

in a single embodiment. Conversely, various features of the
embodiments, which may have been, for brevity, described in
the context of a single embodiment, may also be provided
separately or in any suitable sub-combination. Embodiments
described in conjunction with specific examples are pre-
sented by way of example, and not limitation. Moreover, it is
evident that many alternatives, modifications, and variations
will be apparent to those skilled in the art. It is to be under-
stood that other embodiments may be utilized and structural
changes may be made without departing from the scope of the
embodiments. Accordingly, this disclosure is intended to
embrace all such alternatives, modifications, and variations
that fall within the spirit and scope of the appended claims and
their equivalents.

What is claimed is:

1. A computer system comprising:

atest identifier configured to identify runs of test scenarios
run by users belonging to different organizations on
software systems associated with the different organiza-
tions;

a route analyzer configured to receive a run of a test sce-
nario and to identify a route that the run follows;

a database configured to store the route;

a route retriever configured to receive a template route
belonging to a test scenario template and to retrieve from
the database divergent routes that diverge from the tem-
plate route; wherein the test scenario template is associ-
ated with a certain organization that does not belong to
the different organizations;

a subset selector configured to select from the divergent
routes a subset of divergent routes that are similar to each
other; and

a template manipulator configured to identify that size of
the subset reaches a predetermined threshold greater
than one, and to manipulate the test scenario template
according to the subset.

2. The computer system of claim 1, wherein the template
manipulator is further configured to manipulate the test sce-
nario template by updating the test scenario template accord-
ing to one or more of the routes belonging to the subset.

3. The computer system of claim 1, wherein the template
manipulator further configured to manipulate the test sce-
nario template by generating a new test scenario template
based on the test scenario template and one or of the routes
belonging to the subset.

4. The computer system of claim 1, wherein a route defines
a sequence of one or more elements involved in running a test
scenario; wherein an element is selected from the group con-
sisting of test steps, transactions, and screens.

5. The computer system of claim 4, wherein a divergent
route that diverges from a template route is characterized by
a different sequence of elements compared to sequence of
elements defined by the template route.

6. The computer system of claim 4, wherein the divergent
routes that are similar to each other are characterized by at
least one of the following features: the divergent routes start
from and end with same screens, the divergent routes have a
same sequence of screens but with different user keys, and the
divergent routes comprise same changes in relation to the
template route.

7. The computer system of claim 1, wherein the predeter-
mined threshold is greater than three divergent routes belong-
ing to three different organizations, and the template manipu-
lator is further configured to identify that size of the subset
does not reach the predetermined threshold and not to
manipulate the test scenario template according to the subset.

15

20

35

40

45

50

55

60

62

8. The computer system of claim 1, wherein the route
retriever is further configured to identify divergent routes that
diverge from the template route and later on converge back to
the template route.

9. The computer system of claim 1, wherein the route
retriever is further configured to identify divergent routes that
diverge from the template route and do not converge back to
the template route.

10. The computer system of claim 1, wherein the route
retriever is further configured to identify divergent routes that
merge with the template route.

11. The computer system of claim 1, wherein the predeter-
mined threshold is selected such that reaching the predeter-
mined threshold indicates that the subset is likely to be useful
for other organizations.

12. The computer system of claim 1, further comprising a
monitoring module configured to monitor the users running
the test scenarios on the software systems that belong to the
different organizations and to provide data obtained from the
monitoring to the test identifier; and further comprising a
ranking module configured to rank the manipulated test sce-
nario template according to the size of the subset.

13. The computer system of claim 1, further comprising a
ranking module configured to rank the manipulated test sce-
nario template according to number of different organizations
associated with the routes belonging to the subset.

14. A computer implemented method comprising:

identifying runs of test scenarios run by users belonging to

different organizations on software systems associated
with the different organizations;

receiving a run of a test scenario;

identifying a route that the run follows;

storing the route in a database;

receiving a template route belonging to a test scenario

template; wherein the test scenario template is associ-
ated with a certain organization that does not belong to
the different organizations;

retrieving from the database divergent routes that diverge

from the template route;

selecting from the divergent routes a subset of divergent

routes that are similar to each other; and

identifying that size of the subset reaches a predetermined

threshold (greater than one) and manipulating the test
scenario template according to the subset.

15. The computer implemented method of claim 14, fur-
ther comprising manipulating the test scenario template
according to the subset by updating the test scenario template
according to one or more divergent routes belonging to the
subset.

16. The computer implemented method of claim 14, fur-
ther comprising monitoring the users running the test sce-
narios on the software systems that belong to different orga-
nizations and providing data obtained from the monitoring
for use in the identifying of the runs of test scenarios.

17. A non-transitory computer-readable medium for use in
a computer, the computer comprises a processor, and the
non-transitory computer-readable medium comprising:

program code for identifying runs of test scenarios run by

users belonging to different organizations on software

systems associated with the different organizations;
program code for receiving a run of a test scenario;
program code for identifying a route that the run follows;
program code for storing the route in a database;

program code for receiving a template route belonging to a

test scenario template;

US 9,311,224 B1

63

wherein the test scenario template is associated with a
certain organization that does not belong to the different
organizations;

program code for retrieving from the database divergent
routes that diverge from the template route;

program code for selecting from the divergent routes a
subset of divergent routes that are similar to each other;
and

program code for identifying that size of the subset reaches
a predetermined threshold (greater than one) and
manipulating the test scenario template according to the
subset.

18. The non-transitory computer-readable medium of
claim 17, further comprising program code for manipulating
the test scenario template according to the subset by updating
the test scenario template according to one or more of the
divergent routes belonging to the subset.

19. The non-transitory computer-readable medium of
claim 17, further comprising program code for manipulating
the test scenario template according to the subset by generat-
ing a new test scenario template based on the test scenario
template and one or more of the divergent routes belonging to
the subset.

20. The non-transitory computer-readable medium of
claim 17, further comprising program code for determining
that the size of the subset does not reach the predetermined
threshold and refraining from manipulating the test scenario
template according to the subset; whereby not reaching the
predetermined threshold indicates that the divergent routes
belonging to the subset are not likely to be a suitable alterna-
tive to the template route for other organizations.

#* #* #* #* #*

10

15

20

25

30

64

